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Abstract. Apart from the high accuracy of machine learning models, what in-
terests many researchers and practitioners in real-life problems (e.g., fraud detec-
tion, credit scoring) is finding hidden patterns in the data. In this concern, intrinsi-
cally interpretable models are often preferred to complex ones, which are in most
cases black-box models. Also, glass-box models such as linear regression or shal-
low decision trees are used in some high-risk fields to handle tabular data, even
if performance must be sacrificed. In this paper, we propose TabSRAs, a new
class of accurate tabular learning models with inherent intelligibility. TabSRAs
are based on SRA (Self-Reinforcement Attention), a new attention mechanism
that helps to learn an intelligible representation of the raw input data through
element-wise vector multiplication. The learned representation is aggregated by
a highly transparent function (e.g., linear) that produces the final output. Our re-
sults on synthetic and real-world data show that TabSRAs perform comparably to
state-of-the-art models, while remaining self-explainable. Source code is avail-
able at https://github.com/anselmeamekoe/TabSRA.
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1 Introduction

Since the promising result of the Transformer architecture on machine translation tasks
[31], deep learning models continue to provide impressive performance, for example for
language modeling or computer vision. Convinced by this utility of the attention mech-
anism (used in the Transformer architecture), especially in modeling contextual infor-
mations, many efforts have been made in using it in order to match or compete the ac-
curacy of boosted tree models such as XGBoost [11] in tabular modeling [28,18,15,13].
The main advantage of these attention based architectures is that they are differentiable,
making them easy to use for example in multimodal settings (e.g., encode tabular infor-
mation with text, image, etc.) or multitask settings [2]. However, these full-complexity
models listed above typically use a large number of parameters (or trees), making direct
human inspections difficult. On the other hand, interpretability is usually (i) required by
regulators in real-world applications (e.g., GDPR: Article 22 in Europe), (ii) desired if
the goal is to discover hidden patterns in the data (e.g., fraud detection) or to ensure that
the model does not learn a bias that may lead to significant drift in production. There-
fore, recent research such as [22,25,21] has focused on developing post-hoc methods
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to explain, at least locally, the predictions of full-complexity models. Unfortunately, al-
though these methods provide some interesting properties, they are sometimes based on
some computational mechanisms (e.g., exact Shapley value computation) or hypotheses
(e.g., independence between features) that are difficult to achieve in practice, leading
to biased explanations [6,19]. Still discussing interpretability, [27] provides a technical
reason why an interpretable model might exist among the set of accurate models in any
domain and encourages researchers to move toward finding this solution, especially for
high-risk domains. Convinced by this philosophy, we propose Self-Reinforcement At-
tention for tabular data (TabSRAs). To achieve the inherent intelligibility of TabSRAs,
we found it necessary to develop a representation learning block or layer that (i) pre-
serves the initial feature space (i.e., Rp −→ R

p), and (ii) reduces to the maximum
some extra steps (e.g., residual connection, LayerNorm) that make the overall architec-
ture less interpretable.
Our contributions are summarized as follows:

1. TabSRAs are attention-based supervised models that provide an intrinsic expla-
nation of their predictions and are trained in an end-to-end manner using back-
propagation

2. They contain a Self-Reinforcement Attention (SRA) block that is used to learn
a Reinforced representation of the raw input through element-wise multiplication
with the produced attention vector. This consideration allows to: (i) take into ac-
count possible interactions without unnecessarily adding additional features (terms)
or imposing a limit on the order of interactions between features; (ii) a local and
global model understanding, especially using visualization.

3. Our experiments show that our proposed solution provides understandable repre-
sentations, robust and faithful feature attribution while being competitive in terms
of accuracy compared to state-of-the-art models.

The rest of the paper is organized as follows: Section 2 describes the proposed
model, and its architecture. The experimental setup, the discussion of the obtained re-
sults and the limitations are presented in Section 3. Section 4 presents a brief discussion
of related works. Finally, Section 5 concludes the paper and highlights some perspec-
tives.

2 Model Design

The challenge in most supervised tabular learning problems using attention mecha-
nism [28,18,15,13] is to estimate the output ŷ = fθ(x) given the feature vector x =
(x1, ..., xp) ∈ R

p. The parametric model fθ is learned using the training data D =
{(xi, yi)}ni=1 with yi ∈ {0, 1} for binary classification or yi ∈ R for regression tasks.
Our proposed TabSRAs (Fig 1) contain a SRA block (Fig 2) which is a novel attention
mechanism layer, denoted as a function a(.).
Given the raw input x, the SRA block produces an attention vector a = (a1, ..., ai, ...ap).
Thereafter the attention vector is used to produce a reinforced input o = (o1, ..., oi, ..., op)
as follows:

o = a⊙ x (1)
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Fig. 1: TabSRAs architecture. The attention vector a = (a1, ..., ap) ∈ Rp provided by
the SRA block is used to produce a reinforced vector o = (o1, ..., op) ∈ Rp.

where ⊙ is the element-wise multiplication.
The learned reinforced vector o represents a new feature basis where each component
is guided by the raw input, that is, oi = aixi, helping to maintain the semantics of each
dimension. In this space, some components may be shrinked for instance to 0 using the
attention weights ai ≥ 0 (see the illustrative example in Fig 3). Indeed, considering the
potential internal conflict (due to the interactions) between the raw input components
when using linear models for example, the attention weights vector a may enhance
or reduce some components (of the input vector) at strategic and specific positions
depending on the context (or the whole information in x). Once interactions managed, it
becomes easy to use a highly transparent downstream model to produce the final output.

We investigate in this paper a linear combination of the reinforced feature resulting
in the additive TabSRA model (Fig 1). This instantiation called TabSRALinear can be
formalized as follows:

g(ŷ) = β · o
= β1o1 + ...+ βioi + ...+ βpop

= β1a1x1 + ...+ βiaixi + ...+ βpapxp

(2)

g represents the link function (e.g., usually g(µ) = log( µ
1−µ ) for binary classification

and g = Identity for regression tasks).
βiaixi represents the contribution (the prediction importance) of the feature xi to the
output, and β = (β1, β2, ..., βp) is the linear regression coefficient vector.
We argue that the principal added value of TabSRALinear as an intelligible model
results in modeling data or phenomena that exhibit feature interactions; otherwise, a
simple classical linear model with careful feature engineering should be sufficient to
achieve high accuracy.
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2.1 SRA block

Given the input vector x = (x1, ...xi, ..., xp) ∈ R
p, the SRA block encodes it into p

keys in K = [k1,k2, ...,ki, ...,kp]
T with ki = (k1i , ..., k

dk
i ) ∈ R

dk using a key en-
coder and queries matrix Q = [q1,q2, ...,qi, ...,qp]

T with qi = (q1i , ..., q
dk
i ) ∈ R

dk

using a query encoder (Fig.2 ). The matrix of queries (Q) and keys (K) are generated by

Fig. 2: SRA Block. The KeyEncoder (resp. QueryEncoder) produces directly p keys
(resp. queries)

two separate fully connected feed-forward networks (FFN ) namely QueryEncoder
and KeyEncoder.

The KeyEncoder (resp. QueryEncoder) produces directly p keys (resp. queries)
using a single FFN instead of using p independent FFNs per feature, as in [28,15].
This embedding should be particularly useful for heterogeneous (tabular) data espe-
cially in the presence of strong features’ interactions and at the same time alleviate the
need of using several attention blocks (layers) or extra processing which could affect
interpretable aspects of the attention coefficients. Furthermore, with a Sigmoid activa-
tion function, all elements kji of K (resp. qji of Q) are scalar numbers bounded in [0, 1].

The keys in K are compared to the queries Q component by component using the
scalar product as in [31]. This allow to quantify the alignment of different transfor-
mations of the same input calculating the attention weights a = (a1, .., ai, ..., ap) as
follows :

ai =
qi · ki

dk
for i ∈ 1, · · · , p (3)

We further use the scaling by dk in order to reduce the magnitude of the dot-product
and to obtain dimension-free attention coefficients ai ∈ [0, 1].
We propose this attention computation in order to learn a reinforced representation that
preserves the local proximity of the data points (please refer to Section 2.2 for more de-
tails). Moreover we found it efficient in producing a concise explanation of the decision
process by providing important number of almost zero attention weights depending on
the problem.

2.2 Why SRA block for Robust Representation Learning

In this section, we provide a theoretical analysis regarding the stability of representa-
tions learned with the SRA block and justify why TabSRAs are a viable solution for
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robust self-explainability in tabular learning settings.
The robustness of representation learning algorithms is usually desired in order to pre-
serve, for example, the proximity among data points with respect to the initial space.
Regarding TabSRAs, the robustness can be assessed using the reinforced representa-
tions or feature attributions (for instance, TabSRALinear). For feature attribution based
explanations system, the robustness remains an important topic with the goal of de-
signing the convenient metric to assess the similarity of explanations provide for sim-
ilar inputs [4,5,1]. This is mainly because many state-of-the-art interpretability tools
[22,25,21] operates on single datapoint, and use point-wise explanation to understand
complex model is perhaps too optimistic or can lead to false sense of understanding [5].
To address this limitation, one might want to go beyond individual points and examine
the behavior of the models in the neighborhood of some target points. Therefore it’s
crucial for interpretability methods or self-explainable models to produce explanations
that are robust to local perturbations [5].
The TabSRALinear model is designed to produce relatively robust explanations consid-
ering the following theorem:

Theorem 1. The reinforced representation learned using the SRA block (Equation 1)
and the feature attribution produced by TabSRALinear (Equation 2) are locally stable
in the sense of Lipschitz, that is, for all x ∈ Rp, there exists δ > 0 and Lx ≥ 0 finite
such that:

∥x− x′∥1< δ =⇒ ∥β ⊙ a(x)⊙ x− β ⊙ a(x′)⊙ x′∥1 ≤ Lx∥x− x′∥1 (4)

With Lx = ∥β∥∞(∥a∥∞+La∥x∥∞) and La > 0 the Lipschitz constant of the SRA
block.

The objective of the Theorem 1 is not to provide the tightest bound of the Lipschitz
constant but to provide some justification for attention computation.
First of all, we can notice the quantity ∥x∥∞ in the expression of Lx, which shows that
raw input data should be bounded. This is common situation when using deep learn-
ing models. That is, data scaling technique (using the minimum and the maximum or
the mean and the standard deviation) or quantile transformation is used to speed up the
convergence. We also have the term ∥a∥∞ which proves the smaller are the attention
weights the more stable are the explanations. Using the scaling of Equation 3 we have
∥a∥∞= 1 and we can identify in the first term of Lx the Lipschitz constant of linear
models, which is simply ∥β∥∞. Moreover in situations where there is no interactions
(and non-linear effects) between features, almost all attention weights are expected con-
stant (i.e., La ≈ 0), and TabSRALinear is reduced to classical linear models.
Owing to space limitations, we do not provide a complete proof of the Theorem 1.
However this can be easily done using the fact that (i) a fully connected layer (linear
transformations followed by common 1-Lipschitz activation such as ReLU or Sigmoid)
is Lipschtiz continuous [17] (ii) The product of two Lipschitz continuous and bounded
function is Lipschitz continuous.

We demonstrate empirically (Section 3.2) that TabSRALinear’s feature attributions
are more robust and faithfull than using state-of-the-arts interpretability tools such as
[21,22].
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Table 1: Some differences between the SRA block and the classical Transformer block.
Point Classical Transformer block SRA block

Attention weight A = softmax(QKT√
dk

) ∈ Rp×p a =
∑

dk
Q⊙K

dk
∈ Rp

Value encoding Yes No
Additional processing Yes No

(residual connection, LayerNorm)

2.3 Difference between SRA and others Transformer block

In this section we provide some important differences between the proposed SRA block
and the Transformer block used in [28,18,15,13,31]. We denote by K ∈ R

p×dk the
matrix of keys and Q ∈ Rp×dk the matrix of queries and summarize these differences
in Table 1.

3 Experiments

3.1 Experimental setup

Our motivation when building the TabSRAs is to combine interpretability and perfor-
mance in a single model. Typically, the interpretability of models is assessed separately
from their performance, which can make it challenging to gauge the effectiveness of our
solution. Nonetheless, we believe it is appropriate to measure the value of our propo-
sition by comparing it to both glass-box and full-complexity benchmarks using the
following criteria:

– Intelligibility: Are the representations learned using the SRA block understand-
able? Are the explanations provided by TabSRALinear faithful? Are the expla-
nations concise enough to be understood by humans? Are the explanations ro-
bust/coherent, i.e., similar for similar inputs?

– Effectiveness: Is TabSRALinear accurate compared to state-of-the-art models?

Model setup.

– Choice of the query and key encoder: we use the same architecture for the key
and query encoders which is a two ReLU activation hidden layers fully connected
neural network of dimension {d1, d2} with, d1 = p× (dk/4) and d2 = p× (dk/2),
dk ≥ 4.

– Regularization: to increase the generalization power, we used regularizations in the
SRA block. Specifically, we used dropout [29] in both the key and query encoders
during the training. Also, we used weight decay (L2 penalization) to empower the
smoothness in the embeddings (of the key and query).
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Table 2: Benchmark datasets
Datasets # Datapoints # features # Categorical features Positive Class (%)

Bank Churn 10000 10 2 20.37
Credit Default 30000 23 3 22.16

Bank Marketing 45211 16 9 11.70
Adult Income 30162 14 8 24.89

Credit Card Fraud 284807 29 0 0.17
Blastchar 7043 19 16 26.54

Telco Churn 66469 63 0 20.92
Heloc Fico 10459 23 0 47.81

Benchmark datasets. As we focus particularly on finance as an application domain,
we considered three UCI datasets (Default of Credit Card Clients, Bank Marketing, and
Adult Income) and four Kaggle datasets (Credit Card Fraud, Bank Churn Modelling,
Blastchar and Telco Churn), and the Heloc Fico dataset for our experiments. All of these
datasets are used for binary classification tasks, and the number of features (both numer-
ical and categorical) ranges from 10 to 63. The percentage of positive class instances
varies between 0.17% and 48% (see Table 2 for further details). Unless otherwise spec-
ified, all categorical inputs are one-hot encoded, and numerical inputs are scaled using
mean and standard deviation to accelerate the convergence of the algorithms.

Benchmark models. We compare quantitatively the accuracy/intelligibility of Tab-
SRALinear (Equation 2) with the following baselines:

– Logistic/Linear Regression (LR): It is a highly interpretable model obtained by
simple linear combination of features followed by Sigmoid activation for binary
classification problem.

– Decision Trees (DT): It is another glass-box model that provides decision rules fol-
lowing the paths in the obtained tree. We used the scikit-learn implementation[9].

– TabNet [7]: Uses a multiplicative sparse mask vector for instance-wise feature se-
lection and the masks are aggregated across many stages to compute features’ im-
portance and a local explanation of its predictions.

– MultiLayer Perceptron (MLP): it is a full complexity architecture that can model
nonlinear effects and interactions. It somehow provides us the achievable accuracy
by shallow and differentiable architectures. We consider two hidden layers MLP
(with ReLU activation) of dimensions {4 × p, 2 × p} as in [15]. p is the input
feature dimension.

– XGBoost [11]: Remains the leading state-of-the-art model for several real-life use
cases, and tabular learning competitions. We compare the intelligibility of TabSRA-
Linear with XGBoost coupled with TreeSHAP [21]. TreeSHAP is a well-suited and
computationally efficient explanation tool for tree based models.

It is also to be noted that we do not compare directy to some attention-based models,
such as [28,18,15,13] as they are more motivated by performance than interpretability
and XGBoost can give an idea of the upper bound that these models can reach in most
cases [14,8,13].
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Accuracy evaluation measures. We evaluate the models on benchmark datasets using
5-stratified fold cross-validation (80% for the training) and report the mean and standard
deviation of the Area Under the ROC curve (AUCROC) on the validation set. Particu-
larly for highly imbalanced datasets (e.g., the Credit Card Fraud dataset), we optimize
and reported the Average Precision or Precision-Recall (AUCPR). In fact, AUCPR gives
a more informative picture of an algorithm’s performance than AUCROC in highly im-
balanced data settings and algorithms that optimize AUCPR are guaranteed to optimize
AUCROC [12].

Training details. For TabSRALinear, MLP and LR we used the Pytorch library [23]
and for XGBoost we used [11]. For each benchmark dataset and model, the hyper-
parameters are optimized on the validation set of the first cross validation split using
30 trials of Bayesian optimization (using Optuna [3]). These hyperparameters are then
used for the 4 remaining splits and the best checkpoints performance are reported for
all datasets and models following [10]. In this way, we avoid computational overheads
and at the same time we favor models that are less sensitive to the hyperparameters.
We also set the maximum hyperparameters searching time to 20 hours (per fold and
model). Only TabNet has used the entire 20 hours for the Credit Card Fraud dataset.

3.2 Intelligibility of TabSRALinear

How raw data are reinforced using the SRA block. To illustrate how the raw data
is reinforced in practice, we use 2D toy datasets with the objective of facilitating the
visualization. First, we consider the following function:

F1(x) = 5x1 − 5x21x1>0 and y = {1p>0.5 with p = 1/(1 + e−F1(x)} (5)

As simple as it may seem, this function cannot be directly modeled with a linear model
due to the term 1x1>0, which forces x2 to have no effect on the output when x1 < 0.
Using the reinforced version of the raw inputs helps to alleviate this problem; as shown
in Fig 3. Fig 3a shows the original data distribution, with the yellow color indicating
the class of interest. In Fig 3b, we show the representation learned by multiplying the
raw inputs with SRA coefficients. The green color represents a decision boundary to
separate the two classes. Through multiplication, values of x2 are significantly reduced
for instance to 0 when needed (i.e., o2 ∼ 0 when x1 < 0, x2 < 0), which makes the
classes easy to separate with the downstream model which is a simple linear model in
this work. Moreover, this representation helps to understand the global behavior of the
TabSRALinear model, where it is confident in predicting class 1 (in yellow color) and
where it is less confident, as highlighted by the green color.
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(a) x (b) o = a⊙ x

Fig. 3: Illustration of the reinforcement process on 7500 synthetic data points with 0
mean, unit variance Gaussian distribution. The yellow color is used for the class of
interest.

We included two more examples, the 2D chainLink [30], the Noisy two moon as
depicted in Fig4 and Fig5. By applying SRA coefficients to this dataset, we acquired a
new data representation that enables the easy separation of classes, as shown in Fig4b.
Even without knowledge of the true data generating process, it is apparent that all ob-
servations have been moved strategically so that a simple rule, can effectively isolate
nearly all yellow observations of interest.

(a) x (b) o = a⊙ x

Fig. 4: ChainLink 2D: 1000 data points

(a) x (b) o = a⊙ x

Fig. 5: Noisy two moons: 10000 data
points

Can the TabSRALinear identify important features? In order to interpret machine
learning models, it is sometimes essential to perform feature attribution, which involves
identifying which variables contributed to a high output score.

We aim to assess TabSRALinear’s ability to identify crucial features in comparison
to that of Linear Regression, TabNet and XGBoost coupled with TreeSHAP [21]. As the
ground truths are generally unavailable for real-life datasets, we generate three synthetic
datasets with 5 features x = (x1, x2, x3, x4, x5) of size 30000 based on the Gaussian
distribution (of mean 0 and variance 1) as follows:

Synthetic 1: y = 5x1 − 5x2 (6)

Synthetic 2: y = x2
11x1≤0 (7)

Synthetic 3: y = (5x1 − 5x2)1x5≤0 + (5x3 − 5x4)1x5>0 (8)

For these three datasets, we use 80/20% train/test split and we assess each model on the
test part.
The example called Synthetic 1 is linear regression friendly and only x1 and x2 are
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Table 3: Relevant feature discovery capacity. Precision (%) is used as metric. R2 (the
higher the better) is used to evaluate the test performance (accuracy). The bold numbers
denote the best for each dataset and metric.

Datasets Models Precision Test performance

Synthetic 1

LR 100.00 100.00
TabNet 65.67 99.97

TabSRALinear 100.00 100.00
XGBoost+TreeSHAP 99.85 99.40

Synthetic 2

LR 96.82 50.14
TabNet 49.97 99.99

TabSRALinear 99.79 99.98
XGBoost+TreeSHAP 99.73 99.30

Synthetic 3

LR 51.28 49.91
TabNet 54.33 99.20

TabSRALinear 99.75 99.72
XGBoost+TreeSHAP 75.55 99.21

relevant. The goal is to verify whether TabSRALinear can be reduced to simple linear
model when required (as discussed in Section 2.2). The example Synthetic 2 represents
a branch of a parabolic function. Linear regression cannot therefore accurately model
this example, although it can provide the most important inertia (direction). We con-
sider in the test set observations where x1 ≤ 0 (3743 data points) hence only x1 should
have nonzero importance. The Synthetic 3 example (borrowed from [6]) highlights in-
teractions between the features. Feature interactions is a well-known situations where
most of post-hoc explanation tools struggle to find ’truly’ relevant features of the under-
lying model [6,19,16]. For this example, a perfect model should use only the features
x1 and x2, or alternatively, depending on the sign of x5, use the features x3 and x4. We
restrict our analysis to those data points with x5 ≤ 0, which comprise 3750 instances.
Therefore only x1 and x2 are relevant among (x1, x2, x3, x4). We use the precision in
finding the most relevant features as evaluation metric while the R2 is used to assess
the test performance (accuracy).

As shown in Table 3, TabSRALinear is able to accurately detect the most relevant
features of Synthetic 3 with high precision. Moreover the achieve discovery precision
matches the one of the best baseline on datasets without features interactions that is LR
for the Synthetic 1 and XGBoost+TreeSHAP for Synthetic 2.

From these synthetic examples, we can identify two possible biases when using
feature attribution: (i) the first is due to underfitting (e.g., using linear models to fit
complex data); (ii) the second is due to post-hoc interpretabilty tools used to explain full
complexity models. In the context mentioned above, the TabSRALinear model appears
to be a good compromise for both the feature attribution and accuracy aspects.

Empirical evaluation of the robustness. We evaluate the robustness of TabSRALinear
to input perturbation using two real word well-known datasets: Credit Card Fraud and
Heloc Fico 2. More specifically we consider the continous notion of stability [5] and
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we estimate the local Lipschitz constant as follow:

L̂(x) = argmax
x′∈Nϵ(x)

∥fexpl(x)− fexpl(x
′)∥2/∥x− x′∥2 (9)

where the vector fexpl(x) is the feature attribution (the explanation) for the given ob-
servation x. For Linear models this vector is β ⊙ x while for TabSRALinear it is
β ⊙ a(x)⊙ x. For Linear models, L̂(x) is equivalent to ∥β∥∞ and for TabSRALinear
it is proportional to Lx (see Theorem 1). We generate 100 neighbors Nϵ(x) by adding
a random Gaussian noise N (0, ϵ × I) to every target point x. The used perturbation is
small enough to avoid excessively changing the predictions. That is we use ϵ = 0.001
for the Credit Card data and ϵ = 0.01 for the Heloc Fico dataset.
As shown with Fig 6 TabSRALinear’s explanations are robust to perturbations com-
pared to the pipeline XGBoost+TreeSHAP while providing almost the same accuracy
on these two datasets (see Table 4 for more details). Surprisingly, the Lipschitz estimate
of TabSRALinear is nearly close to the one of Linear models (LR) which are known
to be robust and conservative. This show that the effect applying the SRA attention
weights is similar for very close datapoints.

(a)
Credit Card Fraud dataset:

99 test points of class 1

(b)
Heloc Fico dataset:

1000 test points of class 1

Fig. 6: Estimation of Lipschitz constant on real word datasets. LR = Logistic Regression

Individual prediction explanation. Another criterion when evaluating model inter-
pretabity is whether the explanations are human-friendly, meaning they are (i) concise
enough to be understood by humans (ii) in accordance with the data knowledge or do-
main experts. We validate our proposed model by considering these two points. For this
purpose we used the Credit Default and the Bank Churn Modeling datasets (Table2). In
the case of high-risk clients shown in Fig 7a, TabSRALinear focuses mainly on PAY_0,
which represents the repayment status in the last month before the prediction. The re-
payment status is the number of months of delay in the payment, ranging from -2 (i.e.,
the client has paid two months in advance) to 8 (8 months overdue). Our exploratory
analysis confirms that PAY_0 is the most important risque factor for this dataset. For
the low risk clients, the model focused more on SEX_2 (female) and MARRIAGE_2.
These two categories have slightly low default risk (compared to the other categories
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of the same variables), but depending on the other characteristics of this client (e.g., re-
payment status), TabSRALinear amplifies and uses them to produce low output score.

For Bank Churn Modeling (Fig 7b), according to our data exploration customers
with important number of bank products (NumOfProducts> 2) tend to close their ac-
counts and the churn rate the customers in Germany (Geography=Germany) is twice
that of other countries. The Pearson’s correlation also indicates that the Age is positively
correlated to the target. We consider a high churn risk customerwith NumOfProducts=1
( meaning that NumOfProducts is not a risk factor for this customer). The model in-
dicates that Age and Geography=Germany are the two most important features, which
confirms our data knowledge. On the other hand, the low churn risk costumer is a active
member (IsActiveMember=1) and is a male (the churn rate is 16% for Gender=Male
and 25%, remaining).

(a) Credit Default: The goal is to predict the default
probability (for the next month) of credit card clients
in Taiwan, using historical data.

(b) Bank Churn Modeling: the objective is
to predict whether the customer will leave
the bank (close his account) or continues to
be a customer.

Fig. 7: Individual Prediction explanation

Limitations of TabSRAs based explanations. TabSRAs for instance TabSRALinear,
as proposed, should not be used directly as a global feature selector but rather after iden-
tifying all relevant variables. This is because the feature importance measure provided
by TabSRALinear is ’the local’ prediction importance and not ’the global’ feature im-
portance (cf. Equation 2). Although these two terms are usually used interchangeably in
the literature of feature attribution methods, there are some nuances [20]. Specifically,
the feature that is important to a local prediction is automatically relevant globally, but
the inverse is not always true, particularly when there are interactions. Regarding the
TabSRALinear model, an illustrative example is the synthetic 3 dataset (Equation 8).
For this dataset, a perfect TabSRALinear model will almost always give zero prediction
importance to the feature x5 as it cannot be used as main effect or feature (although it
can be used to reduce the contribution of other features in the attention vector). Thus,
based solely on the prediction importance or its mean aggregation over all test points ,
one may be tempted to delete feature x5 in order to create a model with fewer variables.
However with further analysis (e.g., visualizing or computing the gradient βiaixi vs x5)
we can notice that x5 must be maintained. An shown in Fig 8, an important information
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(a) Prediction importance of x1 vs x5 (b) Prediction importance of x3 vs x5

Fig. 8: synthetic 3: relevance analysis of the feature x5

Table 4: Accuracy of the TabSRALinear model. Mean and standard deviation AUC (%),
reported from a 5-stratified cross validation. Bold highlights the best performance when
comparing self-explainable (LR, DT, TabNet, TabSRALinear) models and italic is used
for the overall best performing model.

Datasets LR DT TabNet TabSRALinear MLP XGBoost
BankChurn 76.93 ±1.56 84.13± 0.75 86.99 ±0.79 86.98 ±0.46 87.08 ±0.73 86.82 ±0.79

CreditDefault 72.53 ±0.49 76.26±0.99 77.85 ±1.03 77.55 ±0.56 78.24 ±0.78 78.56 ±0.69

BankMarketing 90.79 ±0.49 90.92 ±041 92.74 ±0.70 93.33 ±0.50 93.44 ±0.41 93.82 ±0.38

AdultIncome 90.50 ±0.41 90.11±0.59 90.46 ±0.52 91.07 ±0.42 91.45 ±0.38 92.63 ±0.37

CreditCardFraud 77.08 ±2.59 79.66 ±4.42 81.09 ±3.92 86.58 ±2.81 85.69 ±2.53 86.54 ±2.19

Blastchar 84.54 ±1.48 83.49 ±1.21 83.53 ±1.45 84.63 ±1.51 84.63 ±1.52 84.89 ±1.21

TelcoChurn 88.95 ±0.29 90.21 ±0.34 90.45±0.33 90.52 ±0.31 90.54 ±0.28 91.13±0.37

HelocFico 78.26 ±0.52 76.76±0.90 79.39 ±0.57 79.43 ±0.41 79.50 ±0.46 79.75 ±0.74

needs to be known about x5; which is its sign. When x5 < 0 (resp. x5 > 0), the predic-
tion contribution (or importance) of x3 is close to 0 (resp. the prediction contribution
of x1 is close to 0). A similar visualization would lead to the same finding for the con-
tributions of x2 and x4, indicating that x5 is relevant to the model. Dropping it would
result in a drastic reduction in TabSRALinear’s performance, as it would behave like a
simple linear regression.

3.3 The effectiveness of the SRA block.

In this section, we discuss the effectiveness of the SRA block by comparing the accuracy
achieved by TabSRALinear model (Equation 2) on benchmark datasets relatively to the
baseline models (interpretable and non-counterparts).

As shown in Table 4, TabSRALinear achieved the best performance in 6/8 cases
among the self-explainable models (over TabNet, DT and LR). Furthermore, the ob-
tained performance is often close (for 6/8 benckmark datasets) to the one of the overall
best performing model which is XGBoost. These results confirms the effectiveness of
SRA block particularly when observing the difference of performances between the
Logistic Regression (LR) and TabSRALinear which ranges from +0.09 for the Adult-
Income dataset to +10.05 AUC for the Bank Churn dataset. We recall that LR model is
the resulting architecture when removing the SRA block or setting the attention weights
to 1 (cf. Fig 1).
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4 Related work

Recently, many deep learning models were designed in the favor of inherent intelligibil-
ity. Among these models, we mention Neural Additive Models (NAMs) [2] which pre-
sented a neural implementation of the classic Generalized Additive Models (GAMs). In
addition to the marginal feature contribution, NAMs provides the shape function which
by visualization can help understand the global contribution of a given feature. NODE-
G2AM [10] is an improvement of NAMs built on top of the NODE architecture [24] to
take into account pairwise interactions among features. Among the drawbacks of these
deep learning architectures is that they apply one sub-network per feature (or pair of
features) which can be very resource consuming, especially for high dimensional prob-
lems, and the management of higher-order interactions is not guaranteed.
Perhaps the works most closely related to ours are [4,26]. The global idea behind these
works is to imitate the formulation of classical linear models while allowing the regres-
sion coefficients to vary. Specifically, the final prediction is given by g(ŷ) = θ(x) · x.
However, without further condition on θ(x), such model is no more interpretable than
any deep neural networks as θ(x) may vary significantly [4]. To overcome this prob-
lem a linearization approach is used to approximate the behavior of the neural network
θ with a linear model in a local region around a given input resulting in SENN (Self-
Explaining Neural Network) [4]. However a too high of value the penalization param-
eter (use for the linearization process) may result in a drastic decrease in the model’s
performance, and it is not always clear which value of this parameter should be chosen
to balance the trade-off between model performance and interpretability, and to deter-
mine when the model can be considered as self-explainable.
In constrast to SENN, our proposed solution in this work for instance TabSRALinear
didn’t required any additional parameter for controlling the linearization although the
theorithical analysis (Section 2.2) as well the experiments demonstrate that TabSRA-
Linear can accuretely approx linear functions (Cf. 3.2) and provide robust explanations.

5 Conclusion and Future Work

We presented a new class of intelligible models for tabular learning named TabSRAs
and investigated in this work an additive version called TabSRALinear. TabSRAs are
based on Self-Reinforcement Attention (SRA), an attention based representation learn-
ing block that produces a reinforced version from raw input data through element-wise
multiplication. We also showed that TabSRALinear is intelligible in sense that it pro-
vides an understandable intermediate representation and an intrinsic feature attribution.
Our experimental results confirms the proposed model as a promising solution for self-
explainable models in tabular learning settings without the need to ’sacrificing the ac-
curacy’. Overall, we recommend to the interested user to check as much as possible the
agreement of the TabSRAs based explanations with their data knowledge since these are
not causalities. The SRA block as proposed can be further enriched especially to deal
with complex tasks. In this concern, we are currently working on how to use several
heads and layers, similar to what is often performed in attention-based architectures.
Also, combine the SRA block with rule based models (e.g., decision trees) is an impor-
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tant direction of future research as well as incorporating data knowledge in the training
phase (e.g., monotonic constraints with respect to some features).
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