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Abstract. The volatile digital economy forces enterprises to tap into the
potential of data-driven decision-making. Accordingly, proactive man-
agement of business processes is increasingly gaining momentum in in-
formation system research. In addition to the superior model perfor-
mance of predictive models, the explainability of deep learning models
becomes a crucial requirement for real-world applications. Although re-
cent works on explainable predictive business process monitoring pro-
pose various explainability approaches, preliminary research has been
conducted on evaluating explanations regarding their faithfulness. Since
human-created ground truth for evaluating algorithms is often unavail-
able or subjective, objective metrics are needed to assess the faithfulness
of explanations. We contribute to this research gap by quantitatively
and qualitatively investigating the capabilities of different explainabil-
ity methods for Graph Convolutional Neural Networks in the context of
outcome prediction.

Keywords: Explainable AI · Evaluation · Graph Neural Networks · Pre-
dictive Business Process Monitoring.

1 Introduction

Artificial intelligence (AI) has permeated various disciplines, driving its applica-
tion in information systems research. This is particularly evident in the number
of studies conducted on the impact of AI on businesses. There is a significant
shift in the perception of deep learning (DL) model performance for predicting
process-related measures, which is no longer focused solely on achieving high
performance, but on providing explanations to users. This raises vital questions
about how we can evaluate the performance of explanation techniques. Accord-
ingly, we investigate the capabilities of three explainability methods for state-
of-the-art predictive business process monitoring (PBPM) methods [37], namely
Graph Convolutional Neural Networks (GCNNs).

Inspired by the graph nature of processes, some authors transformed the
eventlogs of process executions into graph structure for predicting their pro-
cess measures of interest [19]. Graph Neural Networks (GNNs) can process the
topology information of graph-structured data to reach superior performance in
prediction tasks. First works in PBPM research have proven GNNs applicable
for outcome prediction [31] or next activity prediction [39]. Due to the superior
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model performance, GNNs have become increasingly popular for various PBPM
tasks.

In general, it is necessary to provide human-intelligible explanations for users
to ensure their acceptance of graph-based DL models in the business environment
[38]. However, due to their sophisticated and complex internal representations,
DL models are referred to as opaque “black-box" models that lack interpretability
to humans [25]. A novel research stream in PBPM explores explainability algo-
rithms to suitably explain the PBPM predictions of deep models [30]. While
recent research has begun investigating post-hoc explainability using model-
agnostic or model-specific techniques, we think it is critical to understand how
to evaluate the explanation results, as this evaluation influences users’ adoption
decisions [28].

Against this background, we discovered a research gap in the PBPM liter-
ature: the absence of work evaluating explainability, particularly model-specific
explanations of GCNNs. Appropriate explanation results should faithfully ex-
plain the behavior of the applied DL model [4] and should be helpful for the
user [18]. One challenge in evaluating GNN explanation techniques is that it
often relies on human-made ground truth, highly dependent on subjective un-
derstanding [5]. Therefore, using quantitative metrics to assess the quality of
GNN explanations is a representative sample to evaluate the results from the
model’s perspective [45]. However, methods for assessing explanation faithfulness
for graph-structured data from eventlogs remain unexplored.

To address this research gap, we investigate the quality of three post-hoc
GCNN-based explanation techniques for process outcome predictions and discuss
their general suitability for PBPM. Thereon, we methodologically contribute to
the machine learning research in information systems and address the perennial
need for deep model explanations in the business process environment.

2 Preliminaries

Graph-based PBPM techniques process adjacency matrices of process graphs
derived from eventlogs to predict the desired measures of interest. Eventlogs
consist of process instances that represent the sequential execution of process
events1.

Definition 1 (Event, Trace, Process Instance, Eventlog). An event e
is the smallest instance and denotes a tuple (a, c, t, (d1, v1), ..., (dm, vm)) where a
is the activity name, c is the case id, t is the timestamp, and (d1, v1), ..., (dm, vm)
are event attributes and their respective values. Traces consist of non-empty se-
quences of events σ = ⟨e1, ..., en⟩, and each event can be represented as a vector
xi ∈ Rn containing information associated to each event. The time order of
events within a trace is denoted in superscripts σ = ⟨x(1), ..., x(n)⟩. A trace con-
tains all events up to the current time instant, whereas a process instance (or
case) contains all past and future events. A set of traces is referred to as an
eventlog L = {σ1, ..., σn}.
1 Definitions are inspired by the work of [40,32].



Title Suppressed Due to Excessive Length 3

Definition 2 (Graph, Adjacency Matrix). Intuitively, the sequences of events,
represented by a set of direct edges E connecting two nodes (events) V , can be
represented as a direct graph. Let G = (V,E,X) denote a directed graph, where
V is a set of nodes, E is a set of edges, and X = {x1, ..., xn} a set of node
feature vectors corresponding to the nodes in V . The node feature vectors X rep-
resent event attributes and their corresponding values. Equivalently, G can be
represented as adjacency matrix A ∈ R|V |×|V |. The discrete values in row i and
column j denote existing edges between the associated nodes vi and vj. Adja-
cency matrices express the topology (control flow) information of directed graphs
as illustrated in 1.
Definition 3 (Label). Supervised PBPM approaches assume a labelled event-
log for training. A label defines a certain outcome of a process, given a trace
σ = ⟨e1, ..., en⟩ and indicates a certain class that the classifier has to learn. For
outcome prediction using GCNNs, the task is to classify a trace σ to its corre-
sponding label yi = {1, .., n}.
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Fig. 1: Sequences of events represented by a directed graph and its transformation
to an weighted adjacency matrix.

3 Related Work

In the following, we summarize recent developments in explainable PBPM and in
evaluating explainability to guide our proposed approach that draws inspiration
from both the field of PBPM and recent work on DL operating on graphs.

3.1 Explainability and predictive business process monitoring

In PBPM research, a variety of DL models have been proposed to represent the
properties of eventlogs in neural network architecture, as they show superior
performance for various process prediction tasks [37]. The representation of pro-
cesses as graphs inspires the use of GNN architectures to predict various process
measures, such as the next event [37,39], the outcome [8,31], or the prediction
of the remaining time [21].
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Generally speaking, GNNs are neural network architectures that enable the
processing of graph-structured input data. They compute non-linear transfor-
mation functions to map graph-structured input data into compact vector em-
beddings [14]. A plethora of GNN architectures has been developed for specific
application purposes [43]. Convolutional GNNs, often referred to as GCNNs, are
a special form of GNN which generalizes the characteristics of Convolutional
Neural Networks (CNN) for the processing of non-euclidean data [13]. They
learn higher abstractions with stacked multiple convolutional layers at the cost
of complexity and lack of interpretability. In this context, [45] investigate GCNN
as a basis for post-hoc explainers and demonstrate their performance for various
graph prediction tasks.

Examples of post-hoc GCNN explainers are Grad-CAM, GNNExplainer, or
PGExplainer. Grad-CAM is a gradient-based explainability approach initially
designed for CNNs. [22] extend the method to GCNNs and prove its superior
performance compared to two other methods initially designed for CNNs. Grad-
CAM uses the gradient of a GNN to produce heat maps with back-propagation.
Explainability methods developed explicitly for GNN architectures are GNNEx-
plainer and PGExplainer. Both are perturbation-based methods and derive sub-
graph structures to explain a set of nodes of a given class. This approach is that
simple surrogate or gradient-based methods fall short in learning the semanti-
cally essential structures and graphs’ topology information. GNNExplainer [44]
is the first developed GNN-based explainable method that optimizes masks to
identify crucial edges and features. Meanwhile, PGExplainer [17] learns a pa-
rameterized model to predict essential edges.

While several classes of GNN methods have been proposed in recent PBPM
literature, more studies are needed to explain their predictions [40].

Explainable predictive business process monitoring Several works on
explainable PBPM focus on model-agnostic explanations, e.g., [29,26,23]. How-
ever, little research focuses on model-specific explanations [30]. Recent works on
model-specific explanation methods in PBPM are [41,29] that aim at building
interpretable DL-based models using attention mechanisms or [40] that use layer-
wise relevance propagation. Due to the unique nature of graphs, the emerging
research field on explainable GNNs is developing model-specific algorithms spe-
cialized in interpreting topological structures. These post-hoc explainers show a
promising path to explainable PBPM, which is of pivotal interest to the various
business domains and thus to the information system community.

3.2 Evaluating the Performance of Explainability Methods

With explainability as a crucial design criterion for future decision support sys-
tems [38], it becomes essential that explanation results faithfully explain the
behavior of the predictive model at hand [4]. Comparing explainability tech-
niques for determining performance in terms of faithfulness involves two different
thrusts. First, the interpretability and second, the usefulness of the explanations
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through visualizations of the results for the user is a decisive evaluation crite-
rion [18]. Literature on explanation methods divides corresponding evaluation
approaches into application-based, human-based, and functional-based [3].

Recent work on explainable PBPM mainly focuses on evaluating their pre-
dictive quality by visualizing the explanations for predictions [30]. [24] are the
first to address the user perspective and investigate how to assist users (e.g.,
process managers) in decision-making. Even though explanation visualization
allows users to evaluate the explanation as reasonable, the evaluation is highly
dependent on subjective understanding and cannot serve as an objective evalu-
ation criterion. Further, the ground truth needed to evaluate performance is not
always available, and evaluating explanations by hand can be tedious and, there-
fore, easily prone to error [5]. Accordingly, evaluation metrics that quantify the
studied explanation results should be used to measure whether the explanations
are faithful to the model [11,42].

While recent research makes initial attempts to evaluate post-hoc explana-
tions for PBPM applications [34,36,35], GNN explainability techniques have not
yet been considered as powerful tools for an adequate representation of graph-
structured data, such as eventlogs. In general, the research area of GNN ex-
plainability is still in its infancy. Thus, only a few works empirically evaluate the
applied explainability methods and metrics [1,45,5,27]. [1] provide theoretical
guarantees and empirical evidence on faithfulness, stability, and fairness preser-
vation for nine diverse state-of-the-art GNN explanation methods. A unified
approach to evaluating GNN explanations present [45] that taxonomize explana-
tion methods and propose using fidelity, sparsity, and stability as key evaluation
metrics for GNN explanations. In contrast, [27] quantitatively evaluate graph
input attribution methods with several metrics and [5] shows the drawback of
GNN explanations and why they might not detect the ground truth.

4 Evaluating Explainable Graph Convolutional Neural
Networks for Outcome Prediction

Since explanations are essential to evaluate predictive quality, we evaluate ex-
planations regarding fidelity and sparsity. Built on the recent success of GNNs,
we rely on a GCNN architecture for predicting business process outcomes due
to the architectural advantage favoring the use of graph-structured data, such
as in chemical molecules or business processes [1].

Our approach to assessing the quality of outcome prediction explanations in-
volves three steps (Figure 2). First, we pre-process eventlog data for graph-based
classification, explain predictions, and evaluate the explanations. The left part
of Figure 2 shows our proposed approach for explainable outcome prediction
on a high-level level. We train a GCNN-based neural network architecture to
learn a binary graph classification task. Subsequently, we employ an explanation
method specified for GCNNs and evaluate explanations. Quantitative analysis of
explanation evaluation includes computed evaluation metrics fidelity and spar-
sity. To qualitatively assess the performance and faithfulness of explanations, we
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Fig. 2: A three-step process for explainable outcome predictions.

visualize single graph instances of processes. The right part of Figure 2 provides
detailed insights into the processes in each step. In the following, we present
insights into our method.

Data Preparation Eventlogs require pre-processing before being fed to a
GCNN-based predictor to predict the process outcomes. Thus, we pre-process
raw eventlogs following two distinct approaches and convert them from tabular
to graph data structures. Pre-processing includes data cleaning, bucketing, en-
coding, transforming, and labelling. The first step includes modifying headers,
removing irrelevant columns, replacing unknown values, and adding start/end
nodes. After cleaning, we further pre-process the dataset in different ways ac-
cording to the application objective. Either whole process instances are processed
or extracted prefixes are collected in buckets [33]. Following [31,33], we subse-
quently encode categorical variables with one-hot-encoding. The conversion of
process instances from the eventlog to a graph structure is accomplished using
activity-based [31] and event-based [39]. Subsequently, we label the process in-
stances for the binary classification of process outcomes and delete the events
that derive the labels.

GCNN-based Prediction The GCNN model contains three components [43]:
multiple generalized CNN layers [13] stacked one after another to learn node
representations, a read-out layer to summarize the learned node-based features
and generate a graph level prediction, and finally a linear classifier to deter-
mine probabilities for class membership. Our proposed model consists of three
GCNN layers following a ReLu activation function and a global pooling layer
as a read-out layer to compute a graph’s average overall node features. Then,
a linear layer returns the class membership of the processed instance. We train
the model in batches, allowing the model to process multiple graphs in parallel
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and reducing training time. In addition, the model contains a dropout layer to
prevent overfitting. Figure 3 illustrates the proposed GCNN architecture.
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Fig. 3: Visualization of the proposed GCNN model architecture.

Explanation After predicting process outcomes with GCNNs, we use three
explanation methods (Grad-CAM, GNNExplainer, PGExplainer) to identify es-
sential components of the instance graphs for the prediction. We select explana-
tion methods based on the desirable property generalizability since all methods
can be applied to different graph prediction tasks and GNN architectures. The
returned explanation consists of edge masks combined with the original graph’s
components to form an explanation subgraph. This allows the visualization of
the critical subgraphs as part of the original graph, where edges included in the
critical subgraph’s edge list are highlighted in bold. The steps necessary for ex-
plainable predictions using post-hoc methods depict the central component of
Figure 2. For explaining process outcome predictions depicting a graph classifi-
cation, instance-level explanation techniques are a good starting point. Instance-
level explanations identify essential graph components instead of model-level ex-
planations that derive instance-independent explanations. For PBPM, instance-
level explanations provide more detailed insights into the parts of processes that
lead to the prediction. Thus, we deploy and subsequently compare instance-level
explanation techniques to reveal essential process characteristics.

Evaluation of Explanation GCNN explanations should highlight the node
or edge features the predictive model leverages to make the classification pre-
diction. In the neural architecture of GNN, the message-passing scheme creates
local views of the graph created by embeddings along the edges in the node’s lo-
cal neighborhood. Thus, a faithful explanation corresponds to assessing whether
the explainer identifies critical components for the prediction [45]. There ex-
ists a plethora of quantitative performance measures for explainability methods.
However, some metrics correlate with each other. For example, making an ex-
planation more straightforward by increasing sparsity leads to a deterioration of
other metrics, such as the fidelity metric.
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Following recent research on explainability in GNNs, we use two commonly
applied metrics to evaluate the faithfulness of GNN explanation results [45,10],
namely fidelity+ and fidelity- [22]. Fidelity+ (1) is defined as the difference in
prediction probabilities of the model given the original graph and a constructed
new graph as input [22]. The constructed new graph contains masked compo-
nents decisive for the prediction. Vice versa fidelity- (2) masks decision-irrelevant
components. Explanations with "low fidelity-" and "high fidelity+" show a faith-
ful representation, and sparse explanations are considered more comprehensible.
The sparsity metric (3) measures the sparsity of an explanation as to the pro-
portion of the subgraph identified as decision-relevant in the original total graph
[22]. Following [15,45], we evaluate explanations with fidelity metrics for different
sparsity levels.

Fidelity+prob = 1
1

N

N∑
i=1

(
f(Gi)yi − f(G1−mi

i )yi

)
(1)

Fidelity−prob = 1
1

N

N∑
i=1

(
f(Gi)yi

− f(Gmi
i )yi

)
(2)

Sparsity = 1
1

N

N∑
i=1

(
1− |mi|

|Mi|
)

(3)

Where f() denotes a trained GNN model based on the input graph Gi and
mi specifies the mask generated by the explainable method. Thus, Gmi

i indicates
the generated subgraph containing components essential for the prediction. Vice
versa, G1−mi

i comprises the remaining irrelevant components. |mi| represents the
number of essential graph components, and |Mi| is the number of original graph
components.

5 Experimental Evaluation

Our experimental analysis of GCNN explanation techniques involves a quanti-
tative and qualitative analysis of the explainable outcome prediction results. To
this end, we compare the three different GNN explanation methods GradCAM,
GNNExplainer, and PGExplainer, using fidelity [22] under similar sparsity levels.
The experimental comparison aims at evaluating the performance of explanation
techniques on business process data represented as graphs.

5.1 Experiment Design

We designed experiments to reflect the practical use of GCNN explanation meth-
ods for outcome predictions in PBPM. We experiment with two application do-
mains, namely finance and editorial decision-making. As mentioned above, we
limit the analyzed explanatory methods to those that are particularly applicable
to GNN model architectures in a model-specific way. The good performances on
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diverse graph-structured datasets shown in [45,1] by GCNN-based explanation
techniques made them natural candidates for our proposed approach2.

Prediction. We first train a single 3-layer GCNN and then use Grad-CAM,
GNNExplainer, and PGExplainer to explain the predictions made by the GCNN.
We partition the datasets into 70:20:10 train, test, and validation sets for training
and evaluation. We used a GCN architecture with the following configurations.
Models are trained using the ADAM optimizer with grid-searched learning rate
(0.05, 0.00005) [12].

Explanation. For an intuitive interpretation of experimental results, we es-
tablish a performance baseline for explanation techniques by randomly selecting
a set of graph nodes of the original graph according to the required sparsity.
Then, the evaluation metrics are computed on the randomly generated explana-
tion graphs to verify that the results obtained are better than a random expla-
nation. Finally, we grid-search hyperparameters of explanation techniques for a
fair comparison and fine-tune them, if necessary.

Evaluation. After explaining the prediction, we quantitatively and qualita-
tively evaluate the different explanation methods. For an objective assessment
of explanation faithfulness, we compare different methods with fidelity scores
under similar sparsity levels. Five evaluation runs are performed for ascending
sparsity values. We randomly select 300 instance graphs from each dataset to
calculate the evaluation metrics not taken for training the explainer. In addition,
we visually compare the explanation results.

5.2 Datasets

We consider real-world and synthetic eventlogs suitable for the task of graph clas-
sification, or in other words, for outcome prediction of processes. The synthetic
dataset comprises an intuitively comprehensible process model that enables non-
experts to understand which events influence process outcomes. Consequently,
the eventlog is suitable for a qualitative analysis via visualization. The opposite
applies to the real-world log, which is more complex.

The loan eventlog3 is a commonly used eventlog in process mining research.
The eventlog covers loan applications and related loan application processing
events in an online system. The structure contains three categories of events:
2 The experimental evaluation is implemented in Python 3.8.5. We use PyTorch Geo-

metrics [6] and PyTorch [20] back-ends for an efficient GPU-based implementation.
For the model implementation, we take advantage of the open-source library DIG
[16], which provides a module dedicated to explainability in GNNs. For the visual-
ization of the explanation results and processes, we employ NetworkX [7], a Python
package for graph data structures in particular, as well as PM4Py, a Python pack-
age for process mining [2]. To this end, we can implement and evaluate the chosen
techniques in a unified environment. In the spirit of promoting open research and
fostering transparency in model training and evaluation, we provide access to the
source code at https://github.com/myrmsch/From-Black-Box-to-Glass-Box-Eva
luating-Faithfulness-of-Process-Predictions-with-GCNNs.git [9].

3 BPI Challenge 2017 - Loan eventlog

https://github.com/myrmsch/From-Black-Box-to-Glass-Box-Evaluating-Faithfulness-of-Process-Predictions-with-GCNNs.git
https://github.com/myrmsch/From-Black-Box-to-Glass-Box-Evaluating-Faithfulness-of-Process-Predictions-with-GCNNs.git
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884/1
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application status changes, offer status changes, and workflow events. Following
[31], we reduce the eventlog to workflow events to gain clarity of process flows.
Workflow events represent the actions of the employees of the credit-granting
institution with the information system. Our objective is to train a classifier
that predicts whether the loan will be granted or not.

The review eventlog4 is a published synthetic eventlog depicting the paper
approval process. First, the decision maker invites three reviewers to review the
article, leading to an accept, reject, or no reviewer’s response. Subsequently,
the editor collects the reviews and makes a final approval decision. In doubt,
the reviewer can request further reviews. This can continue in a loop until a
final decision is reached. Thus, the result of the process is to accept or reject
the paper based on previous rounds of reviews conducted. Predicting whether
an article will ultimately be accepted or rejected is the goal of classifying the
process outcome.

We retrieve four datasets to train on during data pre-processing since we
transform the datasets twofold, namely activity-based (ab) and event-based (eb).
For a better understanding of the data, we compute the basic statistics of the pre-
processed datasets (eventlogs) and provide advanced graph-based characteristics
in Table 1.
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Review-Log (ab) 10.000 4.932 5.068 15 16 11 19
Review-Log (eb) 10.000 4.932 5.068 22 84 9 29
Loan-Log (ab) 31.411 14.183 17.228 16 26 5 15
Loan-Log (eb) 31.411 14.183 17.228 24 151 3 183

Table 1: Overview of pre-processed eventlogs.

5.3 Results and Analysis

The results of the comparative evaluation of GCNN predictions on synthetic
and real-world datasets are discussed in the following. The evaluation metric
accuracy for the trained model on train, validation, and test set for whole graphs
as input reports Table 2. The review dataset achieves high accuracy values for
both activity-based and event-based datasets. It is worth highlighting that the
activity-based approach results in almost four percentage points better accuracy
for the loan event log. One possible explanation is the transformation into graph
structures, where event-based coding leads to more nodes.
4 Synthetic eventlog - Review example

https://data.4tu.nl/articles/dataset/Synthetic_event_logs_-_review_example_large_xes_gz/12716609/1
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Accuracy
Model Epochs Train Val Test
GCN review log ab 50 99.9% 99.8% 99.8%
GCN review log eb 200 99.9% 100.0% 100.0%
GCN loan log ab 300 89.4% 88.9% 88.0%
GCN loan log eb 300 92.0% 86.6% 85.7%

Table 2: Overview of training results
for GCNN models trained on whole in-
stance graphs.

To study the accuracy concerning prefix length, we illustrate the achieved vali-
dation accuracy values for different prefix lengths for both datasets (Figure 4).
The accuracy of the predictions for the review dataset initially increases with
increasing prefix length but decreases with the prefix length of ten. Even with
a more extended prefix, the prediction quality is significantly lower than with
whole graphs as input. This shows the importance of the last nodes for the
prediction of the model.

Quantitative Analysis of Explainabililty The results of the quantitative
comparative evaluation of explanation methods summarize Figures 5 and 6. The
following observations emerge from the results.
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Fig. 5: Results of quantitative analysis of explainable techniques applied to the
loan dataset (eb results on the left; ab results on the right).

All evaluation methods outperform the baseline (consisting of randomly se-
lected graph nodes from the original graph) for the activity-based encoded review
dataset. Best results achieve Grad-CAM for explanations with a sparsity of 0.5.
We interpret the fidelity+ of almost 0.8 and fidelity- of almost 0 as meaningful ex-
planations as they can identify distinctive graph components. The PGExplainer
approaches Grad-CAM fidelity performance with increasing sparsity, and GN-
NExplainer achieves better values than the baseline but remains just below it.
When applied to the event-based review dataset, PGExplainer and Grad-CAM
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score worse than the activity-based approach. GNNEXplainer has comparable
fidelity values concerning the baseline and barely outperforms them. Grad-CAM
shows the best fidelity+ values (0.58) at a sparsity of 0.5. However, the fidelity
values are significantly lower than for the activity-based approach. As sparsity
increases, fidelity values increase, leading to less meaningful explanations. No-
tably, at a sparsity of 0.6, the PGExplainer obtains a fidelity+ score of 0.1,
almost 0.3 lower than the baseline. Accordingly, it identifies insignificant graph
components as it fails to learn appropriate structures. Moreover, all techniques
fail to determine unique discriminative components, as was previously the case
with the activity-based approach.
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Fig. 6: Results of quantitative analysis of explainable techniques applied to the
review dataset (eb results on the left; ab results on the right).

The evaluation of the activity-based loan eventlog shows that compared to
the baseline method, only Grad-CAM and GNNExplainer achieve both a higher
fidelity+ and fidelity- for all sparsity values. Note that fidelity- is generally more
distinctive from the baseline, meaning on average the excluded graph compo-
nents lead to a smaller change in the prediction. This indicates that only a part
of decisive graph components are identified. In contrast to the activity-based
loan dataset, Grad-CAM can achieve high fidelity values on the event-based
loan dataset. At a sparsity of 0.5, it achieves a fidelity+ of 0.8 and a fidelity-
below 0. The reached scores compare to the results for the activity-based review
dataset. With increasing sparsity, fidelity+ decreases while fidelity- decreases.
GNNExplainer also outperforms the baseline but does not generate meaningful
explanations as Grad-CAM. The PGExplainer performs worse than the baseline
for all sparsity values considered. Parameter tuning has further shown that the
prediction scores become worse as the output loss of the PGExplainer decreases.
We suggest that the algorithm learns sub-optimal structures.

We demonstrate the meaningfulness of explanations using model-specific
explainable techniques for GNNs. Grad-CAM obtains high fidelity+ and low
fidelity- values for the activity-based review and the event-based loan dataset.
However, we notice that the performance of Grad-CAM varies across all datasets
due to model training. The learning rate significantly affects the performance of
Grad-GAM, while the prediction accuracy remains the same. The GNNExplainer
consistently outperforms the baseline on all datasets but generates less mean-
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ingful explanations than Grad-CAM. In contrast, the PGExplainer can only
exceed the baseline for the activity-based review dataset. The technique under-
performs the baseline for event-based datasets, suggesting that the underlying
graph structure cannot be processed.

Qualitative Analysis of Explainability After examining the performance
of the explainability methods, we visualize the explanation graphs to illustrate
their interpretability (see Figure 7).

0: [‘event_name_start‘, ‘result_0, ‘transition_start‘]
1: [‘event_name_invite_reviewers‘, ‘result_0‘, ‘transition_start‘]
2: [‘event_name_invite_reviewers‘, ‘result_0‘, ‘transition_complete‘]
3: [‘event_name_get_review_2‘, ‘result_accept‘, ‘transition_complete‘]
4: [‘event_name_get_review_1‘, ‘result_accept‘, ‘transition_complete‘]
5: [‘event_name_time-out 3‘, ‘result_0‘, ‘transition_complete‘]
6: [‘event_name_collect_reviews‘, ‘result_0‘, ‘transition_start‘]
7: [‘event_name_collect_reviews‘, ‘result_0‘, ‘transition_complete‘]
8: [‘event_name_decide‘, ‘result_0‘, ‘transition_start‘]
9: [‘event_name_decide‘, ‘result_0‘, ‘transition_complete‘]
10: [‘event_name_invite additional reviewer‘, ‘result_0‘, ‘transition_start‘]
11: [‘event_name_invite additional reviewer‘, ‘result_0‘, ‘transition_complete‘]
12: [‘event_name_get review X‘, ‘result_reject‘, ‘transition_complete‘]
13: [‘event_name_ time-out X‘, ‘result_0‘, ‘transition_complete‘]
14: [‘event_name_get review X‘, ‘result_accept‘, ‘transition_complete‘]
15: [‘event_name_end‘, ‘result_0‘, ‘transition_start‘]
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Fig. 7: Visualization of the generated explanation graphs for an instance of class
1 in the review dataset (ab).

We use masks of the explanation graph to represent graph-based structures
that are significant, starting from a single graph instance. The explanation tech-
nique ranks bold black edges as relevant. To showcase the analysis, we use the
activity-based review dataset due to its easy-to-understand process model. The
review process involves preparing multiple reviews that we deem relevant for the
final decision on rejection or acceptance. If only rejecting reviews are available,
the overall process is likely to result in rejection. Furthermore, we anticipate that
reviews that led to a final acceptance will be more critical to the model.

Grad-CAM marks both the edges between nodes three to six, which contain
the results of the first three reviews and the edges with the included expert opin-
ion. However, GNNExplainer marks the front reviews but not the last review,
and PGExplainer does not mark edges to the crucial nodes, so its explanation
is weak. Our results indicate that the graph-based representation form of the
explanations can intuitively present the results to people. The explanations of
Grad-Cam, agree with the superior fidelity values. Similarly, the visualizations
show that the other techniques only partially recognize decisive areas of the
original graph, highlighting the worse quantitative evaluation values.
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6 Discussion and Future Research

With the increase in the use of explainable methods in PBPM, we ask the key
question if explanations are faithfully describing the underlying model. We con-
tribute to this knowledge base by exploring the capabilities of a novel, explain-
able GCNN-based approach to predicting process outcomes using quantitative
and qualitative evaluation. An essential novelty of our approach is the consid-
eration of objective performance measures for model-specific post-hoc GCNN
explanations to evaluate their faithfulness.

Limitations concerning our approach include that our evaluation uses three
explainability methods and two standard evaluation metrics. While we employ
state-of-the-art algorithms and metrics, it is still possible that other explainable
algorithms provide superior performance. In the same way, our evaluation is
bound to two datasets, which might not yield generalizable results. However,
our initial findings on the limits of explainable GNN provide a starting point
for exploring the circumstances under which one post-hoc explainer should be
preferred over another. The results of our research will enable us to shed light on
the application of PBPM in practice. Various stakeholders can use our findings
to develop explainable PBPM systems. For example, explainable PBPM enables
process owners to reverse engineer processes by extracting information about
the knowledge learned during the training phase. In this context, explanation
methods would enable an understanding of the main drivers or influences on
process performance.

7 Conclusion

Facing the practical need for explainable PBPM, we empirically evaluate explain-
able outcome-oriented PBPM methods. Our work compares different explainabil-
ity techniques specialized for GCNNs in PBPM. We present promising results for
GCNN explainability methods. Through an experimental evaluation, we demon-
strate that exploiting the underlying graph structure of process data enables
the generation of intuitive explanations for humans in the form of graphs and
offers promising quantitative results. Our comprehensive experimental analysis
shows that the examined GNN-based explanation methods can be implemented
successfully to explain predictions for whole instance graphs and prefixes. Grad-
CAM has achieved the best results in both use cases in this context. We see
it as beneficial to compare other explainability techniques and create a broader
spectrum of possible applications in PBPM for practice to foster the acceptance
of algorithms in user interaction.
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