
Game Theoretic Explanations for Graph Neural
Networks

Ataollah Kamal1, Céline Robardet1, and Marc Plantevit2

1 Univ Lyon, INSA Lyon, LIRIS, UMR5205, F-69621 Villeurbanne
2 EPITA Research Laboratory (LRE), FR-94276, Le Kremlin-Bicêtre, France

Abstract. Graph neural networks (GNN) are complex Machine Learning
models that solve various graph tasks such as node classification, graph
classification or link prediction. Due to their complexity, they are treated
as black boxes, and how they perform their prediction is difficult to under-
stand. In recent years, explainers for Machine Learning models have been
introduced, among them methods based on game theory. These methods
try to explain the decision by computing the importance of the features
by considering them as players of a cooperative game who cooperate in
order to make the decision. A player’s impact on the decision is measured
by his marginal contribution to a coalition of players. Different measures
built on this principle exist, and they differ in the axioms they satisfy.
In this article, we consider two such measures that we adapt to explain
GNN.

1 Introduction

The advent of deep neural networks has had a significant influence on the
fields of machine learning and artificial intelligence, leading to remarkable suc-
cesses. These networks have demonstrated promising capabilities across di-
verse research domains such as computer vision and natural language process-
ing, sparking a growing interest in applying deep learning methods to real-
world interdisciplinary areas like chemistry, finance, biology, and more. No-
tably, graph neural networks (GNNs) have emerged as valuable tools for han-
dling graph-related tasks, encompassing node classification, graph classifica-
tion, and link predictions. GNNs offer the advantage of both bypassing the
laborious process of manual feature engineering, which is typically required by
pre-neural methods to turn a learning problem on graphs into one based on tab-
ular data, and achieving exceptional performance. Consequently, the success of
GNNs has spurred the development of advanced GNN operations, including
graph convolution [7, 14], graph attention [18], and graph pooling [27], aimed
at further enhancing their performance. However, as for most deep learning
models, GNNs lack interpretability, which means that they operate like black
boxes without providing an understanding of the underlying mechanisms be-
hind their predictions. This limits their use in critical applications that require
transparency, fairness, privacy, and safety. To overcome this limitation and de-
ploy deep models safely and make them trustworthy, it is necessary to provide



2 Ataollah Kamal, Céline Robardet, and Marc Plantevit

both accurate predictions and human-intelligible explanations. Hence, there is a
growing need for developing explanation techniques that can explain the work-
ings of deep neural networks.

To cope with this problem, explainers have been introduced for GNNs [6,
26]. In general, these explainers can be categorized into two groups. The instance-
level explainers which give explanations for each input, and the model-level
ones, which give explanations for a class. Examples of such model-level ex-
plainers are XGNN [28] and GNNInterpreter [22], which generate a representa-
tive graph for a targeted class, or INSIDE [19], which is a rule-based explainer
for a targeted class. The problem with the two former methods is they rely on
a strong assumption that a decision can be explained by only a single graph.
However, we can observe that this assumption is wrong in many real-world
cases, such as molecular toxicity prediction that can be due to the several struc-
tures. The limit of INSIDE [19] is that it requires access to the hidden layers
of the GNN, which is not possible in many situations (for instance when there
are privacy concerns). Instance-level explainers usually provide explanations
through a mask [1, 5, 9, 12, 15, 21, 25]. Such mask is obtained by perturbing the
input, or studying the gradients. The related methods often optimize metrics on
the mask which prevent assessing the individual contribution of entities inside
or outside the mask, and leads to potentially misleading interpretations [20].

This drawback can be overcome by addressing the problem as a coopera-
tive game. This type of methods tries to explain the model decision by comput-
ing the importance of the characteristics considered as players of a cooperative
game who cooperate to make the decision. A player’s impact on the decision is
measured by his marginal contribution to a coalition of players. Different mea-
sures built on this principle exist, and they differ in the axioms they satisfy. The
most famous solution is the Shapeley value [16] which fulfils important prop-
erties and has been widely used to assess the feature importance in black box
decisions [2, 17].

However, Shapeley-based methods have two main limitations. The first lim-
itation is their computational cost, which is, in the general case, NP-Hard due
to the combinatorics underlying the coalitions to consider during their compu-
tation. To cope with this problem, some efficient alternatives, with a polyno-
mial computation complexity, have been proposed for specific ML models [8].
Another direction to reduce this complexity is to modify the axioms defining
the measure, as in [3]. However, such an approach has not yet been applied
to GNNs. The second limitation of Shapeley values is their non-consideration
of the graph structure within player coalition building, when used to explain
GNNs. To overcome this problem, various approaches have been proposed to
provide game-theory rooted GNN explanations. GraphSVX [4] computes an
approximation of the Shapley values on the node features and nodes them-
selves by sampling the nodes and features as coalitions. Still, this method does
not take into account the graph structure. GraphSHAP [11] uses frequent sub-
graphs as features. This can be problematic for datasets without node labels
like BA2 as the number of such patterns is exponential. GStarX [29] takes ad-



Game Theoretic Explanations for Graph Neural Networks 3

vantage of Hamiache-Navarro value to handle the graph structure in player
coalitions. However, this approach suffers from the computational cost of the
player’s marginal contribution. Even so it considers the structure, only an ap-
proximate algorithm can be effective.

In this paper, we study axiomatic-based methods inspired by game the-
ory approaches for explaining GNNs. We introduce EGO-SHAP which considers
ego-networks as features. This graph concept is at the core of GNNs that learn
vertex embedding based on what the vertices perceived through message pass-
ing. Each node perceives a neighborhood whose size increases with the num-
ber of layers considered, and that corresponds to an ego-network of the same
size. Furthermore, this allows to partially take into account the graph structure
while limiting the number of features, keeping it equal to the number of ver-
tices. The importance of each ego-network in the decision is then computed. To
address the issue of Shapeley value computation cost, we propose a method
approximating Shapeley values in polynomial time. Then, we introduce the Ef-
ficient Symmetric Perturbation Attribution Method (ESPAM) for graphs. Built
on FESP [3], it is an exact polynomial-time method that computes the contri-
bution of each node while considering the graph structure. ESPAM 1 is a new
method based on FESP. It computes the contribution of each node, by having
several cooperative games in which ego-networks are players and GNN is the
value function. ESPAM 2 is a direct adaptation of FESP to graphs where the
super-pixels are replaced by fixed-size ego-networks. To have more accurate
results and respect the structure, we introduce ESPAM 3 which is the general-
ization of the ESPAM 2 by considering ego-networks with different radius. All
of these three methods, not only respect the structure and outperform state-of-
the-art explainers, but also produce explanations in polynomial time with an
exact algorithm.

The rest of the paper is organized as follows. We introduce EGO-SHAP in
Section 2. Then, ESPAM is proposed in Section 3 to deal with the problem of
the complexity of exact computation of Shapeley values. We report an exten-
sive experimental study on several datasets against numerous State-of-the-art
methods in Section 4. Section 5 concludes this paper and discuss the future di-
rections of research.

2 Shapley values to explain decisions of graph classification
models

2.1 Shapley values

Shapley values, introduced in [16], are defined axiomatically in game theory to
measure the impact of each player of a cooperative game on the game outcome.
This impact is evaluated by the marginal contribution of the player considering
a coalition of players. Let (N, f ) be a cooperative game, with N the set of players
and f a function f : 2N → R of the set of all possible coalitions of players to
the outcome of the game, with f (∅) = 0. This function describes the collective



4 Ataollah Kamal, Céline Robardet, and Marc Plantevit

payoff that a set of players can obtain by forming a coalition. Shapley values
are real-valued functions ϕi( f ) that measure the contribution of a player i on
f . Shapley values are a way of distributing total gains to players in a fair way
defined by the following axioms:

Efficiency. All the gain is distributed among the players: f (N) = ∑i∈N ϕi( f ).

Null Player. If the contribution of a player to the game is null, his Shapley value
equals zero. A player i does not contribute to the game, if when he participates
in a coalition, it does not change the outcome of the game, whatever the con-
sidered coalition: f (S ∪ {i}) = f (S), ∀S ⊆ N ⇒ ϕi( f ) = 0.

Symmetry. If i and j are two equivalent players, that is to say if f (S ∪ {i}) =
f (S ∪ {j}) for every subset S of N which contains neither i nor j, then ϕi( f ) =
ϕj( f ).

Additivity. Considering two cooperative games (N, f ) and (N, g), then ϕi( f +
g) = ϕi( f ) + ϕi(g), ∀i ∈ N.

It has been proved in [16] that Shapley values, defined as

ϕi( f ) =
1
|N| ∑

S⊆N\{i}

(
|N| − 1)
|S|

)(
f (S ∪ {i})− f (S)

)
(1)

ϕi( f ) = ∑
S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|!

(
f (S ∪ {i})− f (S)

)
are the only payment rule satisfying the four aforementioned axioms.

2.2 Shapley values on graphs

Using Shapley values to explain graph classification models requires defining
appropriately what is considered a player. The players must, at the same time,
represent elementary information of the prediction process, be related to an in-
ternal mechanism in the model, and finally be limited in number, due to the
complexity of Shapley values computation that increases exponentially with
the number of players. In [11], Perotti et al. propose to use frequent connected
subgraphs as players, underestimating the complexity generated by the poten-
tial large number of players and the difficulty in setting the frequency thresh-
old. Here we limit the number of players by considering ego-networks of fixed
diameter ℓ, with ℓ smaller of equal to the number of layers of the GNNs. We do
have a reduced set of players, related to the structural information considered
by the model.

Definition 1 (ℓ-ego-network). Given a graph G, a ℓ-ego-network ϵℓ(v), for v a node
of G, is the subgraph of G that contains v and all the nodes w and edges e at distance
at most ℓ. ϵℓ(G) is the set of all ℓ-ego-networks of G.



Game Theoretic Explanations for Graph Neural Networks 5

As an explanation of a graph G, we take the most contributing ego-network.
We could also consider a set of most contributing ego-networks, either by fix-
ing a number k of such networks or by considering a threshold on the function
evaluating the contributions of the ego-networks. For reasons of simplicity, and
in order to have a parsimonious explanation, we choose to take a single ego-
network. Thus, we are only interested in the order of Shapley values. We pro-
pose to approximate these values with Algorithm 1. In this algorithm, G(S)
represents the result of masking G by the set S of nodes. It consists in removing
all the incident edges of nodes in S. Algorithm 1 does not consider all possible
coalitions, but those that may impact the Shapley value of a given ego-network.
To that end, it uses weighted sampling so that the nodes with lower distances
to nodes in the coalition have more chance to be selected. Indeed, two close
nodes are more likely to have a mutual effect on each other. In an extreme case,
if two nodes are not connected, then their embeddings are not affected by each
others in the GNN. To estimate ϕv, the algorithm samples a set of nodes S based
on their geodesic distances from v (the minimum number of edges needed to
reach a node from v), such that the closer the node, the higher chance to be
selected. The size of S is uniformly sampled in interval [αn, βn], with α, β two
hyperparameters set to 0.2 and 0.8 respectively. These two values have been
set empirically so that the size of S is around a third of the size of the graph.
It then uses this set to estimate the difference between the predicted value for
G(S) and G(S ∪ {v}). The coefficient applied to this difference is 1

#|S| where
#|S| is the number of times that we sample a set with the same size as S. In the
end, we divide all the values by the number of nodes to uniformly distribute
the contribution between the nodes. Note that if we do not sample any subset
twice and I = 2n−1 (with n = |V|), then the computed value is the exact Shap-
ley value. Finally, the algorithm returns the ego network with the maximum
value.

As we will see in Section 4, the computation time of EGO-SHAP is still very
long to achieve good quality approximations. Another way to overcome this
problem is to modify the axioms defining the attribution measure of the coop-
erative game.

3 Efficient Symmetric Perturbation Attribution Method

We consider the alternative game-theoretic based attribution function proposed
in [3]. This class of functions is defined to satisfy the properties of efficiency and
symmetry, but the additivity is generalized and changed to linearity, and the
null player property is changed to fair treatment. Before explaining the interest
of such changes, we recall the definitions of these two new properties.

Definition 2. Considering the cooperative game (N, f ) and ϕ a contribution function
defined on this game, linearity and fair treatment properties are defined by:

– Linearity property. Considering two cooperative games (N, f ) and (N, g) and
two scalars α1, α2 ∈ IR, then ϕi(α1 f + α2g) = α1ϕi( f ) + α2ϕi(g), ∀i ∈ N.



6 Ataollah Kamal, Céline Robardet, and Marc Plantevit

Algorithm 1: EGO-SHAP

Data: G = (V, E) a graph with n = |V|, ϵℓ(G) the ego-network, fc the GNN
decision for class c, I the number of iterations.

Result: The most contributing ego network.
for v ∈ V do

wv ← 0;
Sum← ∑w dG(v, w);
Size← Array of zeros of length n;
D ← Array of zeros of length n;
for u ∈ V, u ̸= v do

wu ← 1
n−2

(
1− dG(u,v)

Sum
)

end
for i = 1 to I do

/* Number of elements in the coalition */

t← U
(
α× n, β× n

)
;

S← ∅;
for j = 1 to t do

Random draw of s ∼ ws ;
S← S ∪ {s};

end
D[t]← D[t] + fc(G(S))− fc(G(S ∪ {v}));
Size[t]← Size[t] + 1;

end

ϕv ← 1
n ∑n

t=1
D[t]

Size[t] ;

end
return argmaxv∈Vϕv

– Fair treatment property. If the contribution of a player i is lower than the one
of another player j, for all coalitions, its contribution function value is lower than
the one of j: For i, j ∈ N, if f (S ∪ {i}) ≤ f (S ∪ {j}) ∀S ⊆ N \ {i, j}, then
ϕi( f ) ≤ ϕj( f ).

As demonstrated in [3], the only function that meets these four axioms (lin-
earity, symmetry, efficiency, and fair treatment) is defined as:

φi( f ) = w× f ({i})− (1− w)× f (N \ {i}) (2)

with w =
f (N) + ∑j∈N f (N \ {j})

∑j∈N f ({j}) + ∑j∈N f (N \ {j})

This function has been used to explain models on texts or images, but to the
best of our knowledge, there is no such function to explain models on graphs.
Here, we build similar functions for graph models with one difference: they do
not meet the fair treatment property. In Subsection 3.3, we argue that it is not
a problem, and even more, that it is not reasonable to have this property. We
propose three methods which we call ESPAM 1, ESPAM 2 and ESPAM 3. In all



Game Theoretic Explanations for Graph Neural Networks 7

of the following methods, the set of players N is the set of nodes of the graph
to be explained.

3.1 ESPAM 1

We consider the ℓ-ego-network of node v, ϵℓ(v) and φℓ defined by Equation (2)
on the game (ϵℓ(G), fc), with fi(S) the predicted probability of the model f for
the class c on the subgraph defined as the union of ϵℓ(v), v ∈ S. To define the
contribution of each node v, we compute the following function:

ψv( fc) =
1
k

k

∑
ℓ=1

φℓ
v( fc)

ψv( fc) conserves the linearity property, as the function is a linear combination
of φℓ

v( fc) that satisfies the linearity property. Since φℓ
v( fc) is symmetric, the av-

erage over ℓ of these functions is also. For the efficiency, we have ∑v∈V ψv( fc) =

∑v∈V
1
k ∑k

ℓ=1 φℓ
v( fc) = 1

k ∑k
ℓ=1 ∑v∈V φℓ

v( fc) = 1
k ∑k

ℓ=1 fc(G) = fc(G), as φℓ
v( fc)

satisfies the efficiency property.
According to [29] a contribution function for structured games (games with

a structure on N, defined as (N, E, f ) where E ⊆ {(u, v) : u, v ∈ N}) should
meet two axioms to respect the structure. First, if there is no connection between
a node i and a coalition S, then the effect of S on the contribution of i should
be zero. Here, by definition (see equation 2, with f a GNN), all the non-zero
contributions are between a node and a coalition connected to the node. Second,
the contributions should be impacted by the distance between i and S. This is
also the case here, as coalitions S at a distance lower than ℓ will have more effect
than others on ψ. Therefore, our formulation respects the graph structure.

Note that in our setting computing the contribution is done in a linear time
for each node. Therefore, we have two advantages with respect to the Shapley-
based method. First, the time complexity is polynomial, and second, ESPAM 1
respects the structure while, as stated in [29], Shapeley value does not.

3.2 ESPAM 2 and ESPAM 3

For the explanation of models on images, [3] propose to use sets of pixels, called
superpixels, as features of the model. Then, after computing their contribution,
they transfer the contribution of the superpixel to each pixel inside it. We use
this idea on graphs where ego-networks act as superpixels. We propagate the
contribution of the ego-network on each node of it in a uniform way to pre-
serve efficiency. It should be mentioned that the following two methods are
linear since each operator is linear. Similarly, thanks to the invariance of graphs
to permutation, the methods preserve symmetry. We propose two approaches:
one with ℓ-ego-networks with fixed ℓ (ESPAM 2), and another one based on the
average value for a range of radius (ESPAM 3). Algorithm 2 describes ESPAM 3.
ESPAM 2 is the special case of ESPAM 3 with ℓmin = ℓmax. In ESPAM 3, for each



8 Ataollah Kamal, Céline Robardet, and Marc Plantevit

ℓmin ≤ ℓ ≤ ℓmax, we compute the contribution of each ego network s in ϵℓ(G)
(see equation 2), then we uniformly distribute it to its nodes (the line inside the
most inner loop), and finally for each node v we divide this value (ξv) by the
number of radii that we had (ℓmax − ℓmin + 1). More formally:

ξv( fc) =
1

ℓmax − ℓmin + 1

ℓmax

∑
ℓ=ℓmin

∑
s∈ϵℓ(G)&v∈V(s)

φs( fc)

|V(s)|

Algorithm 2: ESPAM 3
Data: Graph G, ℓmin , ℓmax, Decision class c, GNN f
Result: Contribution of each node of G
ξ ← an array of all zeros, the same size as V;
for ℓ = ℓmin to ℓmax do

for s ∈ ϵl(G) do
t← φs( fc);
for v ∈ V(s) do

ξv ← ξv +
t

|V(s)| ;

end
end

end
return ξ/(ℓmax − ℓmin + 1);

3.3 Discussion on the Fair Treatment Property

As stated in [13], a measure ϕ satisfies the fair treatment property if and only if
there exist non-negative constants {bs}n

s=0 such that

ϕi( f ) = ∑
S⊆N\{i}

s!(n− s− 1)!
n!

(
bs+1 f (S ∪ {i})− bs f (S)

)

for i ∈ N, s = |S| and n = |N|. By summing up all the contributions, we have:

f (N) =
n

∑
ℓ=1

cℓ ∑
|S|=ℓ

f (S)−
n−1

∑
ℓ=0

ℓ× c′ℓ ∑
|S|=ℓ

f (S)

where cℓ = ℓ ℓ!(n−ℓ−1)!
n! bℓ−1 and c′ℓ = (n− ℓ) ℓ!(n−ℓ−1)!

n! bℓ. By assuming f (∅) = 0,
we have

(1− cn) f (N) =
n−1

∑
ℓ=1

Tℓ ∑
|S|=ℓ

f (S)



Game Theoretic Explanations for Graph Neural Networks 9

with Tℓ = cℓ − c′ℓ. As it can be seen, the probability on the whole graph should
be a linear function of the sum of probabilities on the subset of features of the
same size. However, regarding how a GNN makes the decision, this does not
hold for most of the cases due to the role of the structure in the decision.

4 Experimental Evaluation

To evaluate our work, we used four datasets BA2 [10], Aids [23], Mutagen [30],
and BBBP [24], and six baselines GNNExplainer, PGExplainer, Grad, PGMEx-
plainer, GraphSVX and GStarX. The two latter are rooted in cooperative game
theory. BA2 is a synthetic dataset in which positive label graphs have a house
motif and negative ones have a 5-cycle. The three other datasets are real-world
molecule datasets that have information about activity against HIV, mutagenic-
ity, and blood-brain barrier penetration respectively. All the experiments have
been done on the machine equipped with 8 Intel(R) Xeon(R) W-2125 CPU @
4.00GHz cores 126GB main memory, running Debian GNU/Linux.

Each dataset has been divided into three parts (training, validation and test
sets). Training and validation sets have been used to learn respectively the pa-
rameters and hyperparameters of the GNN models. We evaluate the different
explanations on a test set corresponding to ten percent of the data taken at ran-
dom. Fidelity and Infidelity measure the dependence of the decision on the ex-
planation. Furthermore, Fidelity states how much different the decision of the
part of the input not included in the explanation is from the original decision,
and Infidelity measures how much the explanation is different from the origi-
nal graph in terms of the decision. Therefore, high Fidelity and low Infidelity
are desirable. Note that if we put the original graph as the explanation, we will
have zero Infidelity, even if such an explanation is not a good. To cope with this
problem, Sparsity controls the size of the explanation. With higher Sparsity, we
have a more human-readable explanation. In the following, we have the formal
definitions of these three metrics:

Fidelity(G, g) = fc⋆(G)− fc⋆(G \ g)

where c⋆ is the class with the highest predicted probability by f for G.

Infidelity(G, g) = fc⋆(G)− fc⋆(g)

Sparsity(G, g) = 1− |g||G|

where |.| is the size of the edge set. To capture the effectiveness of explanations
on the decision, we have two very similar metrics for Fidelity and Infidelity
which we call them FidelityAcc and InfidelityAcc. Their definitions are:

FidelityAcc(G, g) = 1− 1(C(G)=C(G\g)



10 Ataollah Kamal, Céline Robardet, and Marc Plantevit

Table 1. Comparison of methods through four datasets.

M
et

ho
d

A
id

s
M

ut
ag

en
BB

BP
BA

2
M

ea
su

re
Fi

de
lit

y
In

fid
el

it
y

Sp
ar

si
ty

Fi
de

lit
y

In
fid

el
it

y
Sp

ar
si

ty
Fi

de
lit

y
In

fid
el

it
y

Sp
ar

si
ty

Fi
de

lit
y

In
fid

el
it

y
Sp

ar
si

ty
E

G
O

-S
H

A
P

(R
=1

)
0.

12
3

0.
69

9
0.

91
6

0.
13

2
0.

30
5

0.
98

8
0.

18
1

0.
54

3
0.

97
1

0.
17

1
0.

00
0

0.
62

2
E

G
O

-S
H

A
P

(R
=2

)
0.

11
8

0.
70

7
0.

91
2

0.
27

9
0.

21
0

0.
96

9
0.

16
6

0.
44

0
0.

93
2

0.
18

9
0.

21
9

0.
62

2
E

G
O

-S
H

A
P

(R
=3

)
0.

09
1

0.
68

7
0.

91
7

0.
21

0
0.

17
4

0.
94

4
0.

19
2

0.
47

1
0.

88
8

0.
15

4
0.

21
5

0.
36

5

ES
PA

M
1

γ
=

0.
2

0.
04

5
0.

61
8

0.
92

2
0.

26
6

0.
19

3
0.

94
8

0.
15

7
0.

43
3

0.
91

0
0.

23
0

-0
.0

66
0.

56
2

ES
PA

M
1

γ
=

0.
3

0.
05

6
0.

66
0

0.
88

6
0.

26
3

0.
19

1
0.

92
9

0.
18

7
0.

46
1

0.
87

3
0.

22
5

-0
.0

57
0.

47
3

ES
PA

M
1

γ
=

0.
4

0.
06

2
0.

67
6

0.
85

1
0.

25
9

0.
21

1
0.

91
5

0.
19

5
0.

46
1

0.
84

0
0.

21
7

-0
.0

46
0.

34
7

ES
PA

M
2

γ
=

0.
2

0.
06

8
0.

67
7

0.
88

9
0.

25
4

0.
19

7
0.

95
2

0.
11

6
0.

47
1

0.
91

0
0.

22
5

-0
.0

62
0.

60
3

ES
PA

M
2

γ
=

0.
3

0.
07

7
0.

67
9

0.
84

6
0.

25
5

0.
23

5
0.

93
6

0.
14

3
0.

48
2

0.
87

6
0.

18
1

-0
.0

31
0.

41
4

ES
PA

M
2

γ
=

0.
4

0.
07

4
0.

68
4

0.
81

0
0.

25
6

0.
26

6
0.

92
2

0.
15

6
0.

50
5

0.
84

3
0.

16
5

-0
.0

24
0.

30
6

ES
PA

M
3

γ
=

0.
2

0.
07

5
0.

65
3

0.
88

4
0.

23
1

0.
16

6
0.

95
1

0.
13

5
0.

41
1

0.
90

6
0.

15
6

-0
.0

01
0.

48
6

ES
PA

M
3

γ
=

0.
3

0.
07

7
0.

66
4

0.
84

3
0.

24
3

0.
19

3
0.

93
4

0.
16

5
0.

45
1

0.
87

3
0.

14
7

-0
.0

10
0.

38
5

ES
PA

M
3

γ
=

0.
4

0.
07

2
0.

67
8

0.
80

9
0.

24
4

0.
23

6
0.

91
9

0.
16

9
0.

46
5

0.
84

4
0.

14
6

0
0.

26
2

G
N

N
Ex

pl
ai

ne
r

0.
03

6
0.

49
4

0.
50

1
0.

17
7

0.
23

7
0.

50
5

0.
10

0
0.

09
9

0.
50

1
0.

09
3

0.
22

3
0.

61
9

PG
Ex

pl
ai

ne
r

0.
03

2
0.

03
8

0.
54

7
0.

15
7

0.
15

7
0.

51
5

0.
09

8
0.

09
8

0.
53

4
0.

00
4

0.
35

3
0.

95
5

G
ra

d
0.

07
8

0.
76

6
0.

91
0

0.
22

3
0.

35
7

0.
97

8
0.

17
1

0.
44

7
0.

93
8

0.
19

5
0.

33
4

0.
80

4
PG

M
Ex

pl
ai

ne
r

0.
08

9
0.

76
5

0.
85

5
0.

26
0

0.
35

4
0.

95
6

0.
21

2
0.

39
2

0.
88

4
0.

20
1

0.
27

0
0.

74
7

where C(.) is the predicted class by the model.

InfidelityAcc(G, g) = 1− 1C(G)=C(g)



Game Theoretic Explanations for Graph Neural Networks 11

Table 2. FidelityAcc and In f idelityAcc comparison.

Method Aids Mutagen BBBP BA2
Measure FidelityAcc In f idelityAcc FidelityAcc In f idelityAcc FidelityAcc In f idelityAcc FidelityAcc In f idelityAcc

EGO-SHAP(R=1) 0.030 0.683 0.219 0.514 0.137 0.699 0.43 0.15
EGO-SHAP(R=2) 0.066 0.769 0.433 0.323 0.144 0.644 0.43 0.57
EGO-SHAP(R=3) 0.045 0.755 0.352 0.306 0.156 0.692 0.43 0.57

ESPAM1 γ = 0.2 0.035 0.713 0.396 0.290 0.139 0.629 0.43 0.05
ESPAM1 γ = 0.3 0.055 0.723 0.424 0.346 0.172 0.675 0.43 0.02
ESPAM1 γ = 0.4 0.050 0.738 0.403 0.405 0.178 0.688 0.43 0.04
ESPAM2 γ = 0.2 0.035 0.713 0.396 0.290 0.139 0.629 0.43 0.05
ESPAM2 γ = 0.3 0.055 0.723 0.424 0.346 0.172 0.675 0.43 0.02
ESPAM2 γ = 0.4 0.050 0.738 0.403 0.405 0.178 0.688 0.43 0.04
ESPAM3 γ = 0.2 0.035 0.713 0.396 0.290 0.139 0.629 0.43 0.05
ESPAM3 γ = 0.3 0.055 0.723 0.424 0.346 0.172 0.675 0.43 0.02
ESPAM3 γ = 0.4 0.050 0.738 0.403 0.405 0.178 0.688 0.43 0.04

GNNExplainer 0.010 0.010 0.165 0.193 0.072 0.092 0.18 0.43
PGExplainer 0.0 0.025 0.007 0.349 0.0 0.132 0.03 0.43

Grad 0.020 0.768 0.268 0.485 0.086 0.662 0.18 0.43
PGMExplainer 0.015 0.768 0.235 0.782 0.066 0.668 0.43 0.43

For each dataset, the average values of Fidelity, Infidelity and Sparsity are
reported in Table 1. Complementary results with FidelityAcc and InfidelityAcc

are provided in Table 2. Note that for the Shapley approximation, the explana-
tion is already defined and for the ESPAMs, we need a human-interpretable ex-
planation. A contribution vector itself cannot demonstrate the significant part
of the graph responsible for the prediction. To this end, an explanation is the
induced subgraph on the 1-hop of the top γ percent nodes with respect to their
contribution score. γ is a hyperparameter which, in practice, we set to 0.2, 0.3,
and 0.4 values. Regarding Tables 1 and 2, ESPAMs and EGO-SHAP outperform
SOTA methods on Mutagen and BA2 datasets. On Aids, they had superior Fi-
delity and Fidelityacc than SOTA methods. However, in terms of Infidelity and
Infidelityacc, their values are less than most of the SOTA methods but it should
be mentioned that for those SOTAs with the lower Infidelity and Infidelityacc,
the Sparsity is low. We mentioned before why such an explanation is not good.
Finally, on the BBBP, ESPAMs have Fidelity, Fidelityacc, and Sparsity advantage
over the SOTA methods.

We empirically study in Fig. 1 the number of iterations needed by EGO-
SHAP to converge. This requires approximately 1000 iterations for an instance
of BBBP. This implies too long running times when explaining several instances
(e.g., about 11 hours on BBBP test instances as demonstrated in Table 4). This
makes EGO-SHAP non competitive according to other explainers except GstarX
which took 2 days.

Note that Fidelity, Infidelity and Sparsity must be considered together. In
case we focus on one of them, we probably get satisfying metric values but
not a good explanation. E.g., the whole graph would have the best Fidelity but
also the worst Sparsity. As so, we have another metric H-Fidelity which is a
combination of Fidelity and Infidelity normalized by Sparsity [29]. To define



12 Ataollah Kamal, Céline Robardet, and Marc Plantevit

Fig. 1. Number of iterations needed to converge for BBBP for EGO-SHAP.

Table 3. Comparison of ESPAMs and EGO-SHAP with game-theoretic baselines using H-
Fidelity.

Method BA2 Aids Mutagen BBBP
EGO-SHAP(R=1) 0.525 0.507 0.525 0.501
EGO-SHAP(R=2) 0.503 0.505 0.550 0.490
EGO-SHAP(R=3) 0.471 0.488 0.532 0.484

ESPAM1 0. 532 0.510 0.573 0.542
ESPAM2 0.531 0.510 0.574 0.534
ESPAM3 0.530 0.510 0.565 0.538

GstarXγ = 0.2 0.507 0.496 0.489 0.481
GstarXγ = 0.3 0.500 0.498 0.494 0.483
GstarXγ = 0.4 0.495 0.499 0.498 0.485

GraphSVXγ = 0.2 0.503 0.505 0.523 0.508
GraphSVXγ = 0.3 0.491 0.499 0.524 0.499
GraphSVXγ = 0.4 0.481 0.493 0.527 0.489

the equations, we first define the normalized Fidelity:

N-Fidelity = Fidelity(G, g).(1− |g||G| )

Similarly, the normalized Infidelity is defined as:

N-Infidelity = Infidelity(G, g).
|g|
|G|

Now assume that m1 = N-Fidelity and m2 = N-Infidelity. Then, harmonic
Fidelity (H-Fidelity) is:

H-Fidelity(G, g) =
(1 + m1)(1−m2)

(2 + m1 −m2)

To compare our methods by the mean of this metric, we have used the same
dataset and baselines of the same family of our methods (i.e. game theoretic



Game Theoretic Explanations for Graph Neural Networks 13

methods). As the baselines, we use GraphSVX [4] and GstarX [29]. Now that we
have only one metric, in the ESPAMs method, instead of setting γ manually, we
use dual annealing to optimize H-Fidelity by γ. Dual Annealing is a stochastic
global optimization algorithm based on simulated annealing and local search
algorithms. Results are shown in Table 3. ESPAMs outperform their competitors
in terms of H-Fidelity. The execution times needed to provide explanations on
the test instances are reported in Table 4. The only structure-preserver among
the cooperative game competitors is GstarX which had less H-Fidelity and took
two days for each dataset to calculate the explanations while ESPAMs had a
maximum execution time of less than five minutes. EGO-SHAP provides effec-
tive explanations since it outperforms GstarX and GraphSVX on H-Fidelity.
However, it is computationally expensive. Considering this, ESPAM methods
are an efficient alternative.

Table 4. Time Comparison (in Seconds).

Method Aids Mutagen BBBP BA2
EGO-SHAP(R=1) 23411.46 202171.66 42409.054 22158.78

ESPAM1 36.19 217.85 217.85 26.08
ESPAM2 13.28 78.26 16.52 9.28
ESPAM3 36.46 225.45 45.33 28.84

GNNExplainer 215.82 77.89 221.82 217.98
PGExplainer 23.02 16.46 11.44 2.75

Grad 17.25 77.89 55.85 4.237
PGMExplainer 6114.68 4104.46 7755.01 10055.79

In Figure 2, we report some explanations made by three cooperative game
explainers: ESPAM1, GstarX, and GraphSVX for an instance of BA2 dataset with
a negative label (i.e. it has a C5 as an induced subgraph). As it can be seen, the
only explainer that captured C5 is ESPAM1.

5 Conclusion

In this paper, we addressed the problem of explaining GNN decisions. To this
end, we devised EGO-SHAP and ESPAM methods rooted in cooperative game
theory. EGO-SHAP computes the Shapeley value of each ego-network of a given
radius. This allows to take into account the graph structure while keeping a lin-
ear number of players. However, the Shapeley value is costly to approximate.
We then introduced ESPAM methods to compute the contribution of each ego-
network in polynomial time. We reported an empirical study on four datasets
against several state-of-the-art methods. Both EGO-SHAP and ESPAM outper-
form state-of-the-art methods. While EGO-SHAP needs time to compute the ex-
planations, ESPAMs obtain explanations in a very short amount of time. In ad-
dition, ESPAMs respect the graph structure in the player coalitions while the



14 Ataollah Kamal, Céline Robardet, and Marc Plantevit

Fig. 2. Comparison of the explanations made by ESPAM1, GraphSVX and GstarX on
BA2 for an instance with the negative label.

only game-theoretic GNN explainer with such a property – GStarX – takes days
to compute explanations. Our findings pave the way for further research and
development in this area, including exploring other ways to better take into ac-
count the graph structure, and handling multiple features on vertices as well as
measures to assess the importance of the structure against the content itself.

References

1. Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan,
Alex J. Smola, and Hans-Peter Kriegel. Protein function prediction via graph ker-
nels. Bioinformatics, 21(1):47–56, jan 2005.

2. Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge. Computational as-
pects of cooperative game theory. Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning, 5(6):1–168, 2011.

3. Charles Condevaux, Sébastien Harispe, and Stéphane Mussard. Fair and efficient al-
ternatives to shapley-baszhanged attribution methods. Machine Learning and Knowl-
edge Discovery in Databases, page 309–324, 2023.

4. Alexandre Duval and Fragkiskos D. Malliaros. Graphsvx: Shapley value explana-
tions for graph neural networks, 2021.



Game Theoretic Explanations for Graph Neural Networks 15

5. Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, Dawei Yin, and Yi Chang.
Graphlime: Local interpretable model explanations for GNNs. arXiv:2001.06216,
2020.

6. Jaykumar Kakkad, Jaspal Jannu, Kartik Sharma, Charu Aggarwal, and Sourav
Medya. A survey on explainability of graph neural networks. arXiv preprint
arXiv:2306.01958, 2023.

7. Thomas N. Kipf and Max Welling. Semi-supervised classification with graph con-
volutional networks. In 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

8. Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin,
Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From
local explanations to global understanding with explainable ai for trees. Nature Ma-
chine Intelligence, 2(1):56–67, Jan 2020.

9. Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng
Chen, and Xiang Zhang. Parameterized explainer for graph neural network. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 19620–19631. Curran Asso-
ciates, Inc., 2020.

10. Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen,
and Xiang Zhang. Parameterized explainer for graph neural network, 2020.

11. Alan Perotti, Paolo Bajardi, Francesco Bonchi, and André Panisson. Graphshap:
Motif-based explanations for black-box graph classifiers, 2022.

12. Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Charles E. Martin, and Heiko
Hoffmann. Explainability methods for GCN. In IEEE CVPR 2019, pages 10772–
10781, 2019.

13. Tadeusz Radzik and Theo Driessen. On a family of values for tu-games generalizing
the shapley value. Mathematical Social Sciences, 65(2):105–111, 2013.

14. Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE transactions on neural networks,
20(1):61–80, 2008.

15. Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T. Schütt,
Klaus-Robert Müller, and Grégoire Montavon. Higher-order explanations of graph
neural networks via relevant walks. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 44(11):7581–7596, 2022.

16. Lloyd S Shapley. A value for n-person games. In Harold W. Kuhn and Albert W.
Tucker, editors, Contributions to the Theory of Games II, pages 307–317. Princeton Uni-
versity Press, Princeton, 1953.

17. Mukund Sundararajan and Amir Najmi. The many shapley values for model ex-
planation. In International conference on machine learning, pages 9269–9278. PMLR,
2020.

18. Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. Graph attention networks. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings, 2018.

19. Luca Veyrin-Forrer, Ataollah Kamal, Stefan Duffner, Marc Plantevit, and Céline Ro-
bardet. What does my GNN really capture? on exploring internal GNN representa-
tions. In Luc De Raedt, editor, Proceedings of the Thirty-First International Joint Confer-
ence on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages 747–
752. ijcai.org, 2022.



16 Ataollah Kamal, Céline Robardet, and Marc Plantevit

20. Luca Veyrin-Forrer, Ataollah Kamal, Stefan Duffner, Marc Plantevit, and Céline Ro-
bardet. On gnn explainability with activation rules. Data Mining and Knowledge
Discovery, 2022.

21. Minh N. Vu and My T. Thai. Pgm-explainer: Probabilistic graphical model explana-
tions for graph neural networks. In NeurIPS 2020, 2020.

22. Xiaoqi Wang and Han-Wei Shen. Gnninterpreter: A probabilistic generative model-
level explanation for graph neural networks. arXiv preprint arXiv:2209.07924, 2022.

23. Bo Wu, Yang Liu, Bo Lang, and Lei Huang. Dgcnn: Disordered graph convolutional
neural network based on the gaussian mixture model, 2017.

24. Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse,
Aneesh S. Pappu, Karl Leswing, and Vijay Pande. Moleculenet: A benchmark for
molecular machine learning, 2017.

25. Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GN-
NExplainer: Generating explanations for GNNs. In NeurIPS 2019, pages 9240–9251,
2019.

26. H. Yuan, H. Yu, S. Gui, and S. Ji. Explainability in graph neural networks: A
taxonomic survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
45(05):5782–5799, may 2023.

27. Hao Yuan and Shuiwang Ji. Structpool: Structured graph pooling via conditional
random fields. In Proceedings of the 8th International Conference on Learning Represen-
tations, 2020.

28. Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level ex-
planations of graph neural networks. In Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, KDD ’20, page 430–438,
New York, NY, USA, 2020. Association for Computing Machinery.

29. Shichang Zhang, Yozen Liu, Neil Shah, and Yizhou Sun. Gstarx: Explaining graph
neural networks with structure-aware cooperative games. In Advances in Neural
Information Processing Systems, 2022.

30. Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi Yu, and
Can Wang. Hierarchical graph pooling with structure learning, 2019.


