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Abstract. The ever-increasing evolution of Deep Learning methods has
enabled their use in many areas, including cybersecurity. With the expo-
nential growth in the volume of data circulating in computer networks,
their security is a paramount necessity. Nowadays, network security is
mainly pursued using preventive techniques but also by detecting intru-
sions as soon as possible, when they occur. Different types of Machine
Learning and Deep Leaning models have been recently studied for net-
work intrusion detection, but surprisingly, although Network Intrusion
Detection Systems (NIDSs) scrutinize flow data exchanges on a network,
graph-based models have been little explored so far. We propose in this
article to consider the relevance of Graph Neural Network (GNNs) to
detect intrusions and also to explain them. For this purpose, we adapt
the GNNExplainer method, that is, the pioneer method for explaining
GNN decisions, to edge-level classification models.

Keywords: Network Intrusion Detection Systems, Graph Neural Net-
works, Explainable AI, Cybersecurity.

1 Introduction

Nowadays, a lot of sensitive data circulates in telecommunications networks and
must be protected. This is the role of cybersecurity, which seeks to develop
effective safeguard mechanisms, due to the evolution of malicious software and
cyber-attacks. These protections are both preventive – built on knowledge of
how attacks work – and reactive – linked to early detection of attacks when they
occur. These two aspects are essential: the detection allowing us to react quickly
in case of intrusions and the understanding making it possible to set up parades
upstream in order to avoid types of attacks already encountered.

Early intrusion detection can be performed by Machine Learning (ML) meth-
ods. Different types of ML methods have been considered so far, among which
Deep Learning (DL) models have been recognized as successful approaches for
Network Intrusion Detection (NID). Graph Neural Network methods (GNNs) are
an emerging subfield of Deep Learning, which works on graph-based data such
as network topology in NIDs. Surprisingly, while NID systems analyse network
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flow data, graph-based ML models have been little explored so far in this field.
A first step in this direction was performed in [15] where a GraphSAGE-based
model was proposed for NID problem. In this article, we further evaluate this
model by considering another NID benchmark dataset, CICIDS2017 [21], and
compare it with other well-established ML models. We further investigate the
added value of the graph structure for network intrusion detection. Knowledge
of how attacks work can be increased by analyzing ML models. Indeed, if they
succeed to detect attacks it is because they have been able to identify mecha-
nisms underlying the attacks. EXplainable Artificial Intelligence (XAI) methods
provide insight into how a ML model works, and in the best case, allow the user
to understand the model well enough to be able to manually apply it to new
data [8]. Different methods have been proposed to explain GNNs. Most of them
are instance-level methods that aim to provide input-dependent explanations
by identifying important input features on which the model builds its predic-
tion. The gradient/feature-based methods [3] use the gradients or hidden feature
map values to compute the importance of the input features. Perturbation-based
methods [16, 25] learn a graph mask by studying the prediction changes when
perturbing the input graphs. GNNExplainer [25] learns a soft mask by maximiz-
ing the mutual information between the original prediction and the predictions
of the perturbed graphs. Other techniques, such as PGExplainer [16], PGM-
Explainer [23] or GraphSVX [7], use generative approaches to learn surrogate
models. These surrogate models can be misleading because the user tends to
generalize beyond its neighborhood an explanation related to a local model. To
explain the GraphSAGE-based model designed for NID problems formulated
by handling attributes on edges and predicting the attack type associated with
edges, we adapt the GNNExplainer method. This is the pioneering method for
explaining GNNs, to edge-level classification models.

2 Related Work

DL has been acknowledged as an effective approach to NID. Several state-of-
the-art approaches have proved the superiority of DL algorithms to recognize
attacks [2, 9, 11]. Although DL has been conceded as an effective paradigm for
NID, it suffers from some limitations. In particular, the black-box nature of
DL models makes their decision challenging to understand. To tackle this is-
sue, several algorithms coupled with XAI have been developed in the last years
also in the cybersecurity domain. Several studies have explored post-hoc XAI
techniques in NID, such as training a surrogate decision tree model [4] or cou-
pling a surrogate model with a Deep Neural Network [22]. Caforio et al. [5] ap-
ply a Grad-CAM XAI technique in order to generate the gradient-based visual
explanations for CNN binary classification in intrusion detection. Specifically,
Grad-CAM are used to both improve CNN decisions (through a Grad-CAM-
based nearest-neighbor classification) and increase the transparency of the CNN
black-box decisions. In [19], SHAP (Shapley Additive Explanations) is used to
identify the input features that most contributed to binary decisions made by
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a neural network on NID. SHAP is also employed in [24] to analyze the most
relevant features for detecting each category of intrusion. In the study in [1], the
analysis of feature relevance is conducted using DALEX to explain how a deep
neural model evolves over the stream of network flow in CICIDS2017 dataset
to adapt to new attack categories. In addition, recent state-of-the-art works
have explored the use of intrinsic XAI techniques (i.e., attention mechanisms)
incorporated into DL architectures, instead of post-hoc explanation. In [27], a
Temporal Convolutional Network with an attention mechanism is trained for
multi-class classification. The work proposed in [2] implements a Convolutional
Neural Network with an attention mechanism to enhance both the accuracy and
the explanation of the multi-class classification of network traffic data.

In recent years, GNNs have emerged as a sub-field of neural networks ap-
plied to graph representation of data. Several studies have explored the use
of GNNs in different domains, including cybersecurity applications. The work
in [15] proposes a GNN approach for NID for edge classification. The work uses
a graph topology of network flows to capture both edge features and topologi-
cal patterns for IoT attack flow detection. Also the work in [28] adopts a GNN
for botnet node detection. The work in [14] implements a Graph Convolutional
Network for anomaly and threats detection in network environments to iden-
tify both DDos and TOR-nonTOR datasets. Finally, the work in [6] proposes a
GNN-based model applied to social networks to detect anomalies (i.e., fraudulent
activities and spam). This work uses also some statistical graph properties (e.g.,
Betweenness centrality, Degree centrality and Closeness centrality) to identify
the properties of suspicious nodes.

3 From NID dataset to graph

The main goal of a NID system is to discover any unauthorized access to a
computer network. In general, NIDSs rely on traditional (non-graph-based) ML
algorithms. Therefore, they neglect topological information naturally available
within network flow data. Instead, our approach uses a graph-based representa-
tion of network flows, which takes advantage of both the feature representation
of network traffic data and the network topological information extracted from
flows (i.e., each network flow has a source ip and a destination ip). Our idea is
that a graph-based representation of network traffic data can help to disclose and
explain potential intrusion patterns. To evaluate the potential of GNNs to detect
intrusions and to explain them, we consider a dataset that can be modeled by a
graph: CICIDS2017 [21]. It covers a diverse set of attack scenarios created using
six attack profiles (Brute Force, Heartbleed, Botnet, DoS, DDoS, Web Attacks
and Infiltration) and benign behavior, all created using the B-Profile system [20].
The dataset consists of network traffic analysis results using the CICFlowMeter
with labeled flows during five consecutive days (from Monday to Friday) and it
is split into 8 CSV datafiles. The files and their attacks are presented in Table 1.
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Table 1. CICIDS2017 attack types

Labels Data files All files

Monday Tuesday WednesdayThursday
(WebAt-
tacks)

Thursday
(Infiltra-
tion)

Friday
(Morning)

Friday
(PortScan)

Friday
(DDos)

# %

Benign 100% 96.90% 63.52% 98.72% 99.99% 98.97 % 44.52% 43.29% 2273097 80.30%

Bot 1.03% 1966 0.069%

DDoS 56.71% 128027 4.52%

G-Eye 1.48% 10293 0.36%

Dos-H 33.35% 231073 8.16 %

HTTP 0.79% 5499 0.19 %

S-Loris 0.83% 5796 0.20%

FTP-P 1.78% 7938 0.28%

H-Bleed ≈ 0% 11 0%

Infilt. 0.01% 36 0.001%

P-Scan 55.48% 158930 5.61%

SSH-P 1.32% 5897 0.208%

B-Force 0.89% 1507 0.053%

SQLi 0.01% 21 0%

XSS 0.38% 652 0.023%

The network traffic occurs between hosts identified by their IP address and
the port number used. The concatenation of both values are used as nodes of
the graph. Each edge is attributed with a vector of 76 attributes that describe
the traffic between the two incident nodes. This result in a graph4, that in
total, considering the concatenation of the 8 files, is made of 445131 nodes and
2830743 edges. Edges are labeled with one out of 15 attack or non-attack (benign)
types. The number of occurrences of the different labels is also given in Table 1.
We can see that the labels are clearly imbalanced. The graph is made of 716
connected components whose relative sizes is illustrated in Fig. 1 (left). The
largest component has a size of 442782 nodes. 500 connected components have
sizes less than 3 vertices. The distribution of node degrees is shown in Fig. 1
(right). We note that a few nodes achieve a very high degree, whereas for the
vast majority of nodes, the measured degree is low. Categorical features have
been encoded using target encoder method that encodes the categories by the
posterior probability of the class given the input was the considered category.
Once all numeric, the features have been normalized with the StandardScaler
method so that they all have a mean of 0 and a standard deviation of 1. As there
are 76 features, we grouped them with KMeans methods in 10 clusters based on
their correlation coefficients. The correlation matrix reordered by the clusters,
as well as the feature clusters are shown in Table 2. In particular, we note, that
cluster 6 groups together several features computed on packet size and packet
length characteristics, while cluster 7 groups together features computed on Idle
tile and flow IAT characteristics. All clusters, except cluster 1 and cluster 2, are
of good quality, grouping together highly correlated features. These clusters are
used later in Section 5 to explain ML models.

4 It could potentially be a multi-graph, but in the fact there is no multiple edges.
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Table 2. Clusters of features obtained with KMeans based on their correlation coeffi-
cient (left). Heatmap of the correlation matrix reordered by clusters (right)

0 Fwd IAT Min, Bwd IAT Min, Bwd IAT Mean,
Flow IAT Mean, Fwd IAT Mean

1 Bwd Packet Length Min, Protocol, Min
Packet Length, PSH Flag Count, ACK Flag
Count, FIN Flag Count

2 ECE Flag Count, CWE Flag Count, Flow
IAT Min, Fwd Avg Packets/Bulk, Fwd
PSH Flags, Fwd Packets/s, Bwd Avg
Bytes/Bulk, Bwd Packets/s, Fwd Avg Bulk
Rate, Fwd Avg Bytes/Bulk, RST Flag
Count, Idle Std, Init Win bytes bwd, Fwd
Packet Length Min, Init Win bytes fwd, Sub-
flow Fwd Bytes, Bwd Avg Bulk Rate, To-
tal Length of Fwd Packets, Bwd PSH Flags,
SYN Flag Count, URG Flag Count, Bwd
URG Flags, Fwd URG Flags, Bwd Avg Pack-
ets/Bulk, Down/Up Ratio

3 Subflow Bwd Bytes, Subflow Fwd Packets,
Total Length of Bwd Packets, Total Bwd
Packets, act data pkt fwd, Total Fwd Pack-
ets, Subflow Bwd Packets

4 Bwd IAT Total, Bwd IAT Std, Flow Dura-
tion, Bwd IAT Max, Fwd IAT Total

5 Avg Fwd Segment Size, Fwd Packet Length
Mean, Fwd Packet Length Std, Fwd Packet
Length Max

6 Average Packet Size, Avg Bwd Segment Size,
Max Packet Length, Bwd Packet Length Std,
Packet Length Mean, Packet Length Std,
Bwd Packet Length Max, Bwd Packet Length
Mean, Packet Length Variance

7 Idle Max, Fwd IAT Max, Idle Min, Idle Mean,
Flow IAT Max, Flow IAT Std, Fwd IAT Std

8 Active Max, Active Min, Active Mean, Active
Std

9 Bwd Header Length, Fwd Header Length.1,
Min Seg Size Fwd, Fwd Header Length

4 Methods

We present here the model of GNN that we use to detect intrusions in networks,
as well as the method that we use to explain this model.5

4.1 E-GraphSAGE model

GNNs are an adaptation of Neural Network technologies to construct graph em-
beddings in Euclidean space and use them for classification tasks. The basic
operation consists to learn a mapping of graph nodes to a k-dimensional embed-
ding space in such a way that similar nodes – those with similar features and
similar neighborhoods – are closed to each other in the embedding space. To
that end, it progressively aggregates node neighboring information at each layer
of the GNN. Starting with a vector associated to each node, that represents the
features associated to the node or be a vector full of ones, the GNN update the
vector of a node by aggregating the vectors of its direct neighbors multiplied
by a learnable weight. The seminal GCN method [12] has been supplanted by
GraphSage method [10] as it overcomes two main limitations of the previous
method: the fact that GCN requires the whole graph structure during learning
and its computational cost that is high especially for hub nodes. GraphSage

5 The source code is available at https://github.com/EagleEye1107/

E-GNNExplainer

https://github.com/EagleEye1107/E-GNNExplainer
https://github.com/EagleEye1107/E-GNNExplainer
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Fig. 1. Representation of the 150 largest connected components – log scale (left). Dis-
tribution of degree of nodes (right)

samples the set of neighbors during embedding computation. This is similar to
mini-batching, a commonly used technique in machine learning. It consists in
breaking down a dataset into smaller batches with the benefit of training mod-
els more effectively, that is to say it generally improves accuracy, increases speed
and scalability. Neighbor sampling considers only a fixed number of neighbors
picked up randomly. However, since creating a subgraph for each node is not ef-
ficient, GraphSage processes a set of nodes at a time by considering a subgraph
shared by several nodes. GNNs are generally composed of several Convolutional
layers whose results are transformed by a non-linear activation function.

Recently, a new method, E-GraphSAGE [15] has been proposed that extends
GraphSage algorithm for edge classification when attributes are on edges. It sam-
ples and aggregates the edge information of the graph at each layer. Considering
a graph G = (V,E) and eu,v the feature vector associated to edge uv ∈ E, E-

GraphSAGE computes node embedding hk
v for each node v ∈ V and each GNN

layer k. Considering h0
v = (1, · · · , 1), it computes hk

v for k > 0 by first evaluating
hk
N (v) = AGG

(
{euv, u ∈ N (v)}

)
where N (v) is a sample of the neighbors of v

and AGG is an aggregation function such as mean, and then concatenating the

previous vector with the hk−1
v : hk

v = σ
(
Wk ·CONCAT

(
hk−1
v ,hk

N (v)

))
with Wk

the learnable weights and σ a non linear activation function such as ReLU. hK
v

is the embedding of node v at the last layer and E-GraphSAGE outputs for each

vertex uv ∈ E, CONCAT
(
hk
u,h

k
v

)
. In the experiment section, we study the

interest of E-GraphSAGE for network intrusion detection, both from the point
of view of prediction performance and from the interpretation that can be drawn
from the model.

4.2 GNNExplainer

From a powerful ML model for the detection of intrusion in networks, it is possi-
ble to increase the knowledge on the mechanisms of intrusion detection from the
explanation of the model. If this model exploits the topological relations between
the nodes, as GNNs do – relations by which the intrusions are propagated within
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the network – then, the knowledge which one draws from the model can be rich.
We propose to use a XAI approach, based on perturbations, that consists in the
creation of different input disturbances, whether on the graph structure, or on
the graph features, to study their effect on the output. GNNExplainer [25] is
the seminal perturbation-based method for GNNs and we adapt it to explain
E-GraphSAGE. GNNExplainer generates two soft masks of continuous values
in [0, 1], one called feature mask, whose values are weights directly applied
on node features using an element-wise (Hadamard) product, and another one,
called edge mask, which, after be transformed by the sigmoid function to get
values in {0, 1}, is used to extract the most important edges using the same prod-
uct. GNNExplainer is a learning-based explanation method [26], that is to say,
masks are generated thanks to a learning approach that aims to maximize the
mutual information between the original prediction and the one obtained with
the simplified graph as input. GNNExplainer represents a powerful approach to
explain GNNs. However, the method is not adapted to edge-classification GNNs.
We adapt GNNExplainer to the edge classification task where the input features
and the target are on the edges and not on the nodes. It learns and applies a
feature mask on the edge features by computing significant importance weights
for each feature of each data flows represented by the edges of the original graph,
and an edge mask on the edges. However, the two soft masks can affect each
other since we are targeting the same data. To avoid affecting the feature mask
by the edge mask, we separate the two explanations. Algorithm 1 sketches the
two methods that work similarly. To explain the edge (u, v), explain edge (resp.
explain features) first extracts the K-hop neighborhood from u (line 1) where
K is number of layers of E-GraphSAGE. Then E-GraphSAGE is called (line 2)
and the mask is initialized (line 3). In the following loop, the mask generator is
learnt. First the mask is applied on the subgraph using Hadamard product (line
5), and the GNN model is called (line 6). After that, the mutual information
between the prediction of the original subgraph and the simplified subgraph is
used to update the mask generator (line 7) by back-propagating the error on the
inner weights of the generator.

5 Experiments

5.1 E-GraphSAGE model evaluation

We evaluate the effectiveness of GNNs trained to detect network intrusions.
The main questions that we aim to answer are: Is E-GraphSAGE able to de-
tect intrusions? and Does the graph structure improve the prediction accuracy?
To evaluate the accuracy performance of E-GraphSAGE, we compare its per-
formance results with the classical classification methods: Random Forest and
XGBoost [18]. In all the experiments, we used 70% of the data to train the mod-
els and we tested on the 30% remaining data. As CICIDS2017 is imbalanced (see
Table 1), we evaluated the ML models using the accuracy score, but more impor-
tantly the F1 score, which balances between precision and recall by computing
their harmonic mean.
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Algorithm 1: E-GNNExplainer

Input: GNN model E-GraphSAGE, edge to explain (u, v), number of epochs
nb epochs, depth K, Graph G = (V,E)

Output: Mask on edges or features: mask
/* K-hop subgraph */

1 sub G← subgraph(G, u,K)
2 pred original← E −GraphSAGE(sub G, (u, v))
3 mask ← init mask(sub G)
4 for epoch = 1 to nb epochs do
5 sub G masked← apply mask(sub G,mask)
6 pred← E −GraphSAGE(sub G masked, (u, v))
7 mask ← update mask(mask, pred, pred original)

8 Return sub G masked

Comparison with Random Forest and XGBoost. We learn the models in
a binary setting, predicting all attacks versus Benign. We first trained and tested
the models files by files (i.e., each file was divided in training set and testing set).
Results are shown in Table 3. Monday file results are not reported as it only con-
tains Benign instances. The results obtained by E-GraphSAGE are comparable

Table 3. Model accuracy performance measured on each file and across files (in the
binary classification setting)

E-GraphSAGE RF XGboost

Data file Acc F1 Acc F1 Acc F1

Tuesday 99.42% 91.58% 99.98% 99.78% 99.99% 99.86%

Wednesday 99.99% 99.99% 99.90% 99.87% 99.96% 99.95%

Thursday (WebAttacks) 99.98% 99.24% 99.96% 98.44% 99.98% 99.46%

Thursday (Infiltration) 99.98% 64.70% 99.99% 77.77% 99.99% 45.45%

Friday (Morning) 99.99% 99.74% 99.92% 96.41% 99.97% 98.71%

Friday (PortScan) 99.80% 99.82% 99.99% 99.99% 99.98% 99.99%

Friday (DDos) 99.99% 99.99% 99.97% 99.98% 99.98% 99.98%

All files 99.54% 99.06% 99.84% 99.68% 99.89% 99.78%

to the ones attained by Random Forest and XGboost methods. When the at-
tacks are not too rare, it even has better scores than competing methods. This
is all the more remarkable since RF and XGboost are ensemble methods, which
is not the case with E-GraphSAGE that relies on a single model. Due to the lack
of attack instances in the Tuesday, Thursday (both files) and Friday Morning
data files (as shown in Table 1, with less than 3% of attack instances in each
file), E-GraphSAGE obtains its lower F1 scores in the experiments performed
on these days.
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Table 4. Comparison between E-GraphSAGE and E-GSAGE-Abl on each file and
across files (in the binary classification setting)

E-GraphSAGE E-GSAGE-Abl

Data file Acc F1 Acc F1

Tuesday 99.42% 91.58% 96.27% 62.21%

Wednesday 99.99% 99.99% 98.78% 98.35%

Thursday (WebAttacks) 99.98% 99.24% 98.34% 59.65%

Thursday (Infilteration) 99.98% 64.70% 99.91% 20.83%

Friday (Morning) 99.99% 99.74% 97.47% 44.05%

Friday (PortScan) 99.80% 99.82% 99.97% 99.97%

Friday (DDos) 99.99% 99.99% 99.90% 99.91%

All files 99.54% 99.06% 98.33% 96.63%

Ablation study. To evaluate the impact of the network structure on model E-
GraphSAGE, we perform an ablation study using E-GSAGE-Abl. In this model,
the graph structure is modified such that the edges of the graph are not con-
nected to each other. This is achieved by renumbering the nodes in such a way
that any two different edges have different incident nodes. Essentially, this means
that there are no common nodes between different edges in the modified graph
structure. By considering this modification, we can evaluate the impact of the
graph structure on the performance of the E-GraphSAGE model. Specifically,
we can analyze how the absence of interconnectivity between edges affects the
model’s ability to capture and propagate information through the graph. E-
GSAGE-Abl model provides a way to assess the importance of graph structure
and interconnected edges in E-GraphSAGE performance. By comparing its per-
formance with that of E-GraphSAGE model, we can gain insights into the im-
pact of graph connectivity on the model’s ability to learn and generalize from
graph-structured data. Results are presented in Table 4. On Wednesday, Friday
(DDos) and Friday (PortScan) data, the detection is clearly done on the basis of
the features. In this case, E-GSAGE-Abl shows high results despite ablation. On
the other hand, on these same datasets, the results of E-GraphSAGE are equiv-
alent to those obtained by RF and XGboost. Results on Friday (Morning) are
particularly interesting as, on this dataset, E-GraphSAGE outperforms clearly
RF and XGboost, while E-GSAGE-Abl’s performance drops significantly. Last
line in Table 4 shows the accuracy performance results obtained when consid-
ering all the files at once. We can observe that E-GSAGE-Abl perform worst
than E-GraphSAGE, showing that the graph structure brings information to
the E-GraphSAGE and increases the quality of its predictions.

5.2 Explaining intrusion detection models

Our goal is to study the impact of the graph structure and the graph information
on the performance of NIDSs, by focusing our study on understanding which
graph substructures and features are used by the E-GraphSAGE approach to
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predict attacks. To that end, we use E-GNNExplainer. E-GNNExplainer can
be applied for both Local and Global explanations, but, in this work, we focus
on Local explanations only, to study in details the behavior of E-GraphSAGE.
The two main questions we aim to answer are: What is the most influential
subgraph impacting the prediction of an edge of a given type? and What are the
edge features in this subgraph that have the most impact on the prediction of
an edge of a given type? To answer these questions, we focus on the impact of
the graph structure and the message passing aspect of the E-GraphSAGE on
its predictions. For that, we consider the edges whose prediction change when
the graph structure is not taken into account. That is to say, we select the
wrongly predicted edges by E-GSAGE-Abl that are correctly predicted by E-
GraphSAGE. These edges are the source of the 3% difference in the F1 score
between the two models observed in Table 4. This allows us to examine in depth
the importance of the structure of the graph on the predictions. This set of edges
is denoted Impact edgse in the following.

Graph structure analysis. We analyse the graph structure that impacts pre-
dictions of E-GraphSAGE. For each attack class, we applied E-GNNExplainer
on the edges of this type belonging to Impact edges and kept the edge for which
the mask produced by E-GNNExplainer has the maximum mutual information
value. To analyse the subgraph found by E-GNNExplainer, we consider in Fig 2
the distribution of the edge types within the subgraph found for each given class.
We note that Benign, Infiltration and Bot edges dominate subgraphs found for
these three classes, respectively. Benign edges are largely present in subgraphs
of several attacks (e.g., Heartbleed, DDos, DoS, SQL Injection, Port Scans and
SSH-Patator). This is not surprising due to the imbalanced condition of this
dataset. Finally, we note that two sub-categories of DoS attack edges (i.e., DoS
Hulk and DoS Slowhttptest) and PortScan edges appear simultaneously in the
intrusion subgraphs of several attack categories. This suggests that the presence
of these edges into a subgraph can be considered as a relevant sign of malicious
network traffic, although these edges may not provide sufficient information to
identify the exact category of the malicious behaviour. We can notice that Web
Attacks (SQL Injection, XSS, Brute Force, DDoS, DoS Hulk and PortScan) have
similar attack distribution in their neighborhood showing many Benign, Dos
Hulk, DDOs and PortScan edges. These different attacks are the most frequent
ones in the data and it is for this reason that they stand out. Bot, Heartbleed
and Infiltration attacks, on the other hand, show the majority of the edges of
the same type in their vicinity. Indeed, these attacks are known to propagate
through the network, and rely on edges that are similar to themselves, as cor-
rectly identified by E-GNNExplainer. To go into more details in the study of
the most influential subgraphs for E-GraphSAGE predictions, we visualize the
subgraphs provided by E-GNNExplainer for the two edges that maximize the
mutual information. The first subgraph corresponds to the explanation of a Bot
edge and is shown in Fig. 3. The Bot attack edge is colored in red on the graph.
On this subgraph, we note that the Bot attack is performed from node 56 to
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Fig. 2. Distribution of edges according to their type within the edge explanation max-
imizing mutual information for each attack class

node 47. We can notice the dependency of the explained attack with the other
attacks from the same type, performed by the same source node. Interestingly,
this dependency includes the edge (40, 56), also associated to a Bot attack tar-
geting the node 56. We recall that Botnet attacks are performed with the goal to
create a network of devices controlled by attackers remotely. Then, the infected
devices are used to carry out attacks. In fact, the graph dependency reported in
Fig. 3 highlights the propagation of Botnet attack from node 40 to node 47, via
node 56. Fig. 4 shows the most influential subgraph associated to the prediction
of a Benign edge (in red on the subgraph). One can notice the presence of only
benign edges within the subgraph.

Edge feature analysis. To understand in depth the contribution of the edge
features on the predictions of E-GraphSAGE, we used E-GNNExplainer to ob-
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Fig. 3. The most influential subgraph obtained by GNNExplainer to explain Bot attack
edge (56,47)

tain the feature mask that represents the feature importance, while explaining
the edges from Fig. 2. To analyze the masks, we used the clustering presented
in Table 2 to group the 76 features into 10 clusters. Fig 5 presents the number
of occurrences in each cluster of the 10 most important features. The plot sug-
gests that the features in cluster 9 are involved in all attacks except Bot and
Benign. We point out that cluster 9 contains features as Fwd Header Lenght1.
and Min Seg Size Fwd that are recognized as important to distinguish attacks
from benign also in [29]. In addition, we can observe that cluster 3, involving fea-
tures counting the number of packets in both backward and forward directions,
achieves a high frequency in all classes, except Bot attacks. On the other hand,
features in cluster 1 are recognised as the most important by GNNExplainer
to identify Bot attacks. The cluster contains features counting the number of
flags sent by a host as PSH Flag Count, ACK Flag Count and FIN Flag Count.
In normal traffic flow, the number of these flags is random, but in Bot traffic,
a pattern makes the number of these flags exchanged in the network high and
almost fixed [13]. In addition, cluster 1 contains the feature Protocol. We can
also observe that Protocol is present in Table 5 (left) reporting the top-10 most
important features for the prediction of the Bot attack edge (56,47) using GN-
NExplainer. This is expected since HTTP protocol is one of the more commonly
used protocols to propagate Bot attacks [17]. We also note that the top-10 most
important features for the prediction of the Benign edge (57,18) comprise Bwd
Packet Length Min, Packet Length Variance and Active Std which are also rel-
evant for recognizing the Bot attack edge (56,47). The remaining features are
specific for the Benign profile.

6 Conclusion and future work
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Fig. 4. The most influential subgraph obtained by GNNExplainer to explain Benign
edge (57,18)

Table 5. The top-10 most important features found by GNNExplainer to explain
the Bot attack edge (56,47) (left) the Benign edge (57,18) (right) classified by E-
GraphSAGE model

Rank Features Importance weight

1 Protocol 0.969751

2 Fwd Packet Length Min 0.963157

3 Max Packet Length 0.960226

4 Bwd Packet Length Min 0.954250

5 Min Packet Length Std 0.953229

6 PSH Flag Count 0.944505

7 ECE Flag Count 0.935783

8 RST Flag Count Std 0.909857

9 Active Std 0.904808

10 Packet Length Variance 0.878375

Rank Features Importance weight

1 Subflow Bwd Bytes 0.576703

2 Bwd Packet Length Min 0.562913

3 Idle Mean 0.548867

4 Avg Bwd Segment Size 0.541600

5 Fwd Packet Length Max 0.535543

6 Packet Length Variance 0.534765

7 Active Std 0.533494

8 Bwd Avg Bytes Bulk 0.531683

9 Subflow Bwd Packets 0.531668

10 Average Packet Size 0.531412

This article explores the effectiveness of GNNs trained for network intrusion
detection problems. The analysis is performed by considering a benchmark cy-
bersecurity dataset, namely CICIDS17, that contains benign network flows, as
well as malicious network flows belonging to multiple intrusion categories. Specif-
ically, CICIDS17 network flow data, that occur between hosts identified by the
host IP and the used port, are represented as edges of a graph structure, so
that the network intrusion detection problem can be formulated as an edge clas-
sification task. The experimental study, described in the article, explored the
accuracy of the GNN model compared to that of traditional ML models neglect-
ing the graph structure of data. In addition, the described experimental study
illustrated an ablation study to show the gain in accuracy achieved accounting
for the graph structure information training a GNN model. As a further contri-
bution, in this article, we illustrate an extension of GNNExplainer formulated to
explain GNN decisions on network flow connections at edge level. The GNNEx-
plainer allows us to disclose useful insights into the network structure of attack
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Fig. 5. Feature importance, grouped by KMeans clusters, obtained by GNNExplainer
to explain attack edges

signature, as well as into the main characteristics of the intrusions. To the best
of our knowledge this is one of the first studies exploring both the accuracy and
explainability of GNN methods in cybersecurity problems. This study paves the
way for future developments in this direction. One limitation of the proposed ap-
proach is that it neglects the streaming nature of the network traffic. Signatures
of intrusions may change over time also due to adversarial attacks. As future
works, we plan to explore how changes in both the graph structure explanations
and the network traffic characteristic explanations can help in detecting concept
drifts by triggering appropriate adaptations of the trained GNN model to the
drifted data. In addition, we plan to explore possible graph representations of
malware detection problems, in order to explore the advantages of both GNNs
and GNNExplaner also in the field of malware detection.
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