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Abstract. Artificial Intelligence algorithms have now become perva-
sive in multiple high-stakes domains. However, their internal logic can
be obscure to humans. Explainable Artificial Intelligence aims to design
tools and techniques to illustrate the predictions of the so-called black-
box algorithms. The Human-Computer Interaction community has long
stressed the need for a more user-centered approach to Explainable AI.
This approach can benefit from research in user interface, user experi-
ence, and visual analytics. This paper proposes a visual-based method
to illustrate rules paired with feature importance. A user study with
15 participants was conducted comparing our visual method with the
original output of the algorithm and textual representation to test its
effectiveness with users.

Keywords: User-centric Explainable AI · Visual Analytics · User Inter-
faces for Explainable AI

1 Introduction

Artificial Intelligence (AI) and Machine Learning (ML) decision-making sys-
tems are widely used in high-stakes domains such as healthcare, justice, and
finance. Their usefulness in solving increasingly complex tasks comes at a cost:
the internal logic behind the model is often unintelligible to humans. Follow-
ing the General Data Protection Regulations (GDPR) by the European Union,
which establishes a right to an explanation for a user affected by an automated
decision-making system [34], there has been an emergence of explainable artificial
intelligence (XAI) techniques in recent years [1, 16, 10]. These techniques seek
to make AI and ML models interpretable by humans. However, several studies
[22, 3, 19, 1, 17] have pointed out that most of the work in XAI is built upon
researchers’ belief of what a “good” explanation is [3, 22], framing XAI mainly as
an algorithmic problem and not focusing enough on the user’s point of view [23].
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The Human-Computer Interaction (HCI) community has recently directed its
attention toward the intersection of Artificial Intelligence (AI) and Explainable
AI (XAI), incorporating theories and concepts from the rich research field of HCI
and reframing XAI as a design problem[17]. In the present study, we introduce
a novel and innovative approach named FIPER (Feature Importance Plot for
Explanatory Rules) that leverages the visualization of explanations through the
fusion of rules and feature importance. While rules play a central role in our in-
vestigation, we augment their significance by incorporating feature importance,
which serves to provide valuable context regarding the role and relevance of a
specific feature upon which a rule’s predicate has been generated. By integrat-
ing these two components, we anticipate a significant enhancement in the user
experience, facilitating a more comprehensive and intuitive understanding of the
underlying prediction algorithm.

The central role in this study is played by rules; however, they are supported
by Feature Importance(FI). FI provides context for the significance and rele-
vance of a feature for which a rule predicate has been formulated. This integra-
tion is expected to enhance both the user experience and the user’s conceptual
understanding of the prediction algorithm. FIPER exploits interactivity by de-
sign to manage datasets with a high number of features. The user can filter the
attributes to focus only on those that are predicates of the rule. In this way,
the cognitive workload is lowered. FIPER is designed around the data scien-
tist/developer enabling the user to verify hypotheses and to assess that the AI
model works accordingly to the expected behavior [28]. A user study was per-
formed to investigate if FIPER effectively supports the users in their work. [1,
25].

2 Related Work

This work contributes to the field of human-centered explainable AI, which seeks
to bring techniques and methodologies from HCI into the design of explana-
tions [17]. Our primary objective is to leverage a visual representation of the
explanation to facilitate and enhance human interpretation. In 2018 the De-
fense Advanced Research Projects Agency (DARPA) “explainable AI initiative”
framed the explainable AI process as a three-stage approach, distinguishing be-
tween the explainable model, the explanation user interface, and the psycholog-
ical requirements crucial for their design. By differentiating between the model
responsible for generating explanations for machine learning algorithms and the
means employed to effectively communicate these explanations to the user, this
framework provides a comprehensive understanding of the multifaceted nature
of explainable AI.

By aligning our research with these established frameworks and principles,
we aim to contribute to advancing the field by proposing a novel visual-based
approach that caters to the psychological requirements of users. By focusing on
the design of an intuitive and visually appealing explanation user interface, we
aspire to bridge the gap between complex machine learning models and human
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comprehension, thereby enabling users to gain meaningful insights and a deeper
understanding of the underlying AI algorithms [12, 4].

Chromik et al. define an explanation user interface (XUI) “as the sum of out-
puts of an XAI system that the user can directly interact with. An XUI may tap
into the ML model or may use one or more explanation-generating algorithms to
provide relevant insights for a particular audience” [4]. The separation between
the explainable algorithm and how the explanation is presented to the users
has also been pointed out by [6]: the authors differentiate between explanation
techniques and explanation visualizations. The first involves the generation of
rough explanations, usually propounded by AI researchers, while the latter con-
cerns how these rough explanations are presented to users. Text can be used to
convey a simple form of explanation, while the conjunctive use of text and vi-
sual cues can enhance how explanations are delivered to the users [8]. However,
visualization is better suited to communicate complex concepts [2]. [35] cite
basic charts for raw data, as well as tornado diagrams for list attribution, and
saliency heatmaps for image-based models. It has been proven by [25] that the
way an explanation is displayed has an effect on how the user makes decisions.
In [36], the authors investigate how different visual displays of example-based
explanation affect the user appropriate trust of the ML classification. However,
as reported by [25], the design and testing of different visualizations for Explain-
able AI are still under-studied. The pure text has been used to show rules [24,
9]; however, some visual examples can be found in [25, 24, 2]. Another key point
for explanations is the implementation of interactivity: although advocated in
several studies, its integration within explanations is still limited [1, 5, 21]

3 Visual Explanation for Rules and Feature Importance

3.1 XAI methods

We address the problem of representing explanations based on rules in a visual
format to enable the user to investigate the relationship of the input with the
outcome of the decision system. Accordingly to [11], a rule can be formally
defined as a statement like p → y, where the consequence y is the output of
the black-box and the premise p is a conjunction of split conditions on the
observed features, where each condition can be represented as a predicate of the
form ai ∈ [vi,l, vi,h], where ai is one of the features of the data and vi,l and
vi,h are respectively the lower and upper bounds for the domain of ai where
the predicate is valid. For categorical data types the predicate has the form
ai ∈ {vl, vj , . . . , vk}, where each vi is a value of ai. An instance x is covered by
a rule r if all the predicates of the premise of r are satisfied by x.

Automatic scripts and programs can efficiently manage rules to enable sup-
port for reasoning and exploration. However, this formal representation may
present a high cognitive load for the user. Moreover, rule predicates do not pro-
vide an explicit ranking of the features of the data. Explanation methods based
on Feature Importance provide a ranking of each feature based on the relevance
of the feature in the final decision. Given an instance x, a FI method returns
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an ordered sequence of pairs [(aj , w1), (al, w2), . . . , (ak, wm)], where each feature
ai is associated with a weight wi that represents the relevance of ai in the deci-
sion. For local explanation, the reference to a feature ai intentionally means the
actual value observed for ai in the current instance x. The explanations based
on FI are lightweight from a cognitive point of view, although they provide less
information than those based on rules.

We propose a visual interface that combines the strong points of both groups
of explanation strategies. In particular, we exploit FI to enforce a ranking on
the visualized features to guarantee that the most relevant are the firsts shown
to the user. We introduce a visual encoding to represent the intervals yielded
by the rule predicates to easily catch the relationship of each interval with the
global distribution of the data. Without loss in generality, we identified two
methods for both families of explanation strategies: LORE [11] and SHAP [20].
We opted for LORE due to prior experience of its adoption in previous case
studies. Nonetheless, the visualization is versatile enough to accommodate other
rule-generating algorithms like Anchor [31], by adopting a translation interface
to match the input schema of our tool. For calculating Feature Importance, we
employed SHAP, a widely recognized standard in the field. Alternately, other
algorithms such as LIME [30], which also generate Feature Importance, can be
employed.

3.2 Visualization

Our proposal organizes the explanation’s visual space to combine the informa-
tion yielded by the FI and the rule-based methods. Figure 1 shows a visualization
of an instance extracted from the German Credit Risk dataset from UCI [7], a
dataset widely used for educational purposes. The visualization comprises two
panels: on the left, the weights of the FI methods are reported and sorted ac-
cordingly to their absolute values; on the right, the rule predicates are visualized
following the order of the first diagram. The FI panel represents the weights by
color coding the corresponding feature’s positive (blue) or negative (magenta)
contribution. The visualization is designed using a color-blind-friendly palette.
The rule predicates panel visualizes all the features with a specific chart aligned
with the elements in the FI panel. We use two different types of charts based
on the type of each feature. For categorical data types, we adopt a stacked bar
chart to show the part-of-the-whole relationship of each possible value. With
this representation, the user can catch the internal distribution of the values. A
diamond point is located in the center of the value observed for the attribute
in x. For numerical data types, we use a box plot chart that shows a compact
visualization of the data distribution: min, max, first quartile, third quartile,
and median. The observed value for x is represented by a diamond point located
within the scale of the box plot. For those attributes for which exists a predi-
cate p in the rule r we add a second layer to highlight the intervals of the rule.
The interval visualization changes accordingly to the data type. For categorical
data, the intervals contained in the rule premise are highlighted in yellow. For
numerical data, a yellow bar represents the extent of the predicate values.
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Fig. 1: FIPER visualization of one instance of the German Credit Risk dataset.
(Top) Attributes are sorted by the absolute value of FI. Categorical attributes are
represented as stacked absolute bar charts. Numerical values are represented as
box plots. The interval contained in the predicates of the rule are highlighted in
yellow. (Bottom) Filtered view of the visualization, showing only the attributes
referred in the rule premise

The example in Figure 1 shows a rule for an instance of the dataset that is
classified as Bad Credit Risk. The attributes are sorted by the absolute values
of weights of FI. For instance, the attributes account check status and housing
(both categorical) are the most relevant for FI, even if they are not mentioned
by the rule associated with the prediction. The predicates of the rule refer to
three attributes: present employed since, purpose, and age. The interval for the
predicate for age is relevant since it covers the lower part of the distribution. The
diamond shows that the associated value is below the first quartile. As suggested
by [1, 22, 4], two forms of interactivity are implemented:

– To focus the user’s attention only on the predicates, it is possible to dynam-
ically restrict the view only to those attributes mentioned within the rule.
This interaction follows the principles of giving users easy access to relevant
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and important information [32, 18]. The lower part of Figure 1(Bottom)
shows the restricted version.

– For each attribute, the user may get access to a finer level of details of the
corresponding distribution by hovering the pointer over the visualization.
Figure 2 shows two different styles of tooltips for two different data types.
For the categorical data type (Top), we show the selected value and its
cardinality. For numerical data type, we show a set of representative values
(min, max, Q1, Q3, median) and the value of the corresponding feature.

Fig. 2: Finer details of a specific feature, selected by hovering the mouse on
the corresponding row. (Top) Tooltip for a categorical data type, where the
feature’s actual value is shown with its class’s cardinality. (Bottom) Tooltip for
a numerical data type, where statistical central values are shown: min, max,
median, Q1, and Q3.
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3.3 Other explanation modalities.

We compared FIPER with two other interfaces, presented in Figure 3. LORE
output is the raw output of the algorithm as text. The XAI library visualization
is the implementation already available within the XAI Library4. The latter
enhances the rule’s content by improving each predicate’s readability with a
sequence of graphical blocks.

(a) LORE Output (b) XAI Library

Fig. 3: The same instance of Figure1 visualized as LORE output and XAI library
visualization

4 User Study

A user study was performed to better understand the value of FIPER in pro-
viding clear and understandable explanations. More specifically, three different
explanation modalities were compared (i.e., Lore simple output, XAI library
output, and FIPER) to answer the following research questions:

– RQ1. Can the explanation modalities support data scientists in understand-
ing the AI model?

– RQ2. What is the difference among the explanation modalities regarding
data scientist satisfaction?

4.1 Participants and design

A total of 15 students in the second year of the Master’s degree in Data Science (7
females) participated in the study. Their mean age was 25 years (SD = 2.7, min
= 22, max = 31). Out of 15 students, 12 declared their knowledge of the dataset
as ”very low” and ”low”, while 3 stated that they had good knowledge of it.
Considering the number of participants, a within-subject design was performed

4 https://pypi.org/project/XAI-Library/
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[29], with the explanation modality as an independent variable and three within-
subject factors, i.e., Lore simple output, XAI library output, and FIPER. The
participants worked individually with the three modalities and provided their
opinion.

4.2 The experimental tasks

The participants were asked to carry out a sequence of 3 instances of increasing
difficulty, defined by the number of predicates in the rule. For each instance,
the participant had to answer three experimental questions. The first one asked
them to indicate which features are present within the rule. The second question
requested them to identify (if any) rule predicates that are insignificant to the
prediction. Finally, they were asked to identify the most relevant predicate of the
rule to determine the prediction. Because each of the 15 participants answered
the above 3 questions for each of the 3 instances on 3 modalities, the total
number of answers collected was 405 (15 × 3 × 3 × 3). To avoid possible unfair
effects of learning from the first task (i.e. order effect) [33], the questions and
the explanation modality order were counterbalanced across the participants,
according to a Latin Square design.

4.3 Procedure

The study occurred in a quiet university room where the students attended
their classes. Three researchers were involved, who intervened just if technical
problems emerged. The study lasted one hour and a half, starting from the pre-
sentation of the study goal to the participants, including the interaction with
the three visualization modalities to answer the experimental questions, until
the completion of questionnaires administered before and after the interaction
to collect data about the participants and their opinion on visualizations. All
participants followed the same procedure. First, they were introduced to the
study purpose and what they had to do. Participants were asked to sign an in-
formed consent as our university’s ethics committee requires for the user study.
All participants provided consent. Then, the participants were invited to the
study via a link to a web platform that allowed them to answer the experimen-
tal questions using the three modalities. Once the participant clicked on the link,
a page providing an overview of the study and its goals appeared. At this stage,
the platform requested participants to fill in a questionnaire to collect their de-
mographic data, and their familiarity with the domain on a scale from 1 to 7 (1
- being not familiar at all, 7 - being very familiar). The other data were collected
anonymously, with no means of identifying individual participants. The plat-
form randomly assigned participants to one of the three explanation modalities.
Thus, a training session where they saw the instructions on how to read each
explanation was followed by one practice trial. The actual study session then
started. The participant interacted with the first visualization modality to an-
swer the three experimental questions for each instance. Then, the participant
completed an online questionnaire including NASA-TLX [13]. This procedure
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was the same for all the 3 conditions. However, before repeating the same proce-
dure with the next modality, the participants were invited to relax for 5 minutes.
Finally, the platform asked participants to fill in a final questionnaire to express
their satisfaction with the modalities they had just used and to vote for the
best explanation modality and explain why; the questionnaire included the User
Engagement Scale (UES) [26] in its short form related to the preferred visualiza-
tion. At the end of the study, participants were thanked for their participation.
A pilot study involving three participants was conducted to check the overall
research methodology.

4.4 Data collection and analysis.

Quantitative and qualitative data were collected to answer the two research
questions. To analyze the support (RQ1) provided by the explanation modalities
to data scientists, metrics such as the error rate and task execution time were
considered.

4.5 Error rate.

Participants could make two different types of errors while performing the tasks:
when asked to list a set of features, they could either enter a feature that was
not present (E1) or not enter a feature that was present (E2). To calculate the
error rate, we created nine vectors containing the correct answers, three for each
instance. The elements of the vectors were equal to the number of features in
the train set of the dataset, plus the “I’ don’t know” option. The 9 vectors were
compared with those of the responses given by the users to compute the error
rate; in Figure ??, the error rate of Lore Output is compared to the other two
visualizations. During the task for each instance and visualization, we noted the
completion time each participant took to analyze the visualizations and complete
the task. We use these time measurements as a proxy for the cognitive workload
of each condition.

4.6 User satisfaction.

The online questionnaire to investigate satisfaction (RQ2) with the explanation
modality was composed of two sections. The first section proposed the NASA-
TLX questionnaire, used as “Raw TLX” [13]. It is a 6-item survey that rates
perceived workload using a system through 6 subjective dimensions, i.e., Mental
Demand, Physical Demand, Temporal Demand, Performance, Effort and Frus-
tration, rated within a 100-point range with 5-point steps (lower is better).
These ratings were combined to calculate the overall NASA-TLX workload in-
dex [14]. Specifically, the NASA-TLX was used to assess the workload caused by
each modality because the user’s workload when using a software tool influences
user satisfaction. The second section presented the new UES (User Engagement
Scale) short form, derived from the UES long form. It is a 12-item survey used
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to measure user engagement, a quality characterized by the depth of a user’s
investment when interacting with a digital system [27]. It typically results in
positive outcomes [26]. This tool measures user engagement by summarizing an
index that ranges from 0 to 5. It also provides detailed information about four
dimensions of user engagement, i.e., Focused Attention (FA), Perceived Usabil-
ity (PU), Aesthetic Appeal (AE), and Reward (RW). The last questionnaire
was administered when the participants used all three explanation modalities. It
evaluated the participant’s satisfaction by asking them to rank the three modal-
ities based on their Utility, Completeness, Understandability, and Helpfulness
(from 1 to 3, 1 is the best) and to vote for the best visualization explaining why
they preferred a modality over the others.

4.7 Results

Figure 4(Top) shows all tasks’ errors and completion times for all the users. The
results are organized by instance (rows) and visualizations (columns). For each
cell of this grid, the chart shows each user’s actual time to complete the three
tasks (bar chart on the top, with a line showing the median completion time) and
the number of errors (heatmap on the bottom). We use two distinct colors scales
for the heatmaps. The LORE Output visualization (first column) uses grayscale
to represent each task’s absolute number of errors. The other two visualizations
(columns 2 and 3) show the difference from the LORE Output errors using a
divergent color scale: purples maps to better performance and oranges to higher
errors. The tasks with no errors are denoted with a thicker black stroke. Fig-
ure 4(Bottom) reports the absolute errors for each task and each condition. In
this case, each circle has a color proportional to the number of errors. Each circle
reports the actual number for further details. Gray circles denote tasks where
there are no errors. Although considered the easiest, the first instance shown to
the user required a higher completion time. This might be because the user had
to get acquainted with the different visualization strategies and gain the correct
way to read the outputs. Among the three visualizations, FIPER appears to be
the most time-consuming but with a significant improvement in the error rate.
We can conclude from this observation that although FIPER is slightly more
time-demanding than the other two visualizations, it performs better on all the
tasks, even with the most difficult instances. From the user satisfaction question-
naire, FIPER visualization was chosen as the top preferred by 10 participants,
4 preferred the XAI Library visualization, and only one chose Lore simple out-
put. FIPER was considered the most valuable visualization by 13 participants
(the other two chose the XAI library). Overall the FIPER was considered more
understandable by 10 participants.

The XAI library Visualization was appreciated by some of the participants for
its conciseness, and it was pointed out that it may be more suited for datasets
with a low number of features. A participant commented that FIPER is the
most easily readable visualization even though XAI Library Viz might be more
immediate for certain questions. This follows what was stated by [15] about
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Fig. 4: Errors rate and completion times for tasks in each condition.(Top) The
first column shows the absolute errors of the LORE output. The other two
columns show the difference w.r.t. the first column, with divergent color scale to
highlight increment or decrement in errors. (Bottom) Absolute number of errors
for each output and each task

the completeness of explanations which is positively correlated with improved
mental models and does not impair user experience or task.

5 Conclusions and future work

This research paper introduces a novel visual-based approach for rule repre-
sentation. It evaluates its effectiveness compared to two existing textual-based
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approaches within the context of data science education. By integrating the rules
with feature importance, we aim to enhance the user experience and promote a
better understanding of the underlying prediction algorithm.

The preliminary findings of our study indicate that the visual-based approach
demonstrates superior suitability for datasets containing a high number of fea-
tures. Conversely, qualitative feedback suggests that the XAI library visualiza-
tion may be more suitable for datasets with fewer attributes. It is worth noting
that our initial testing of FIPER was conducted with data scientists; however, we
intend to extend its application and customization to various scenarios, specif-
ically targeting experts in different domains. Furthermore, FIPER offers users
a certain degree of interactivity, allowing them to engage with the explanations
provided.

This work is not free of limitations. Feature importance is used to sort pred-
icates, even if it can contrast with the rule-based approach. However, it’s worth
noting that rule-based methods don’t consistently provide a logical order when
displaying rules and the order of presentation of the predicates may not be
aligned with their relevance. Thus, our approach makes a design choice to exploit
FI ranking in the visualization. The user retains the option to decide whether
to apply this sorting, for example prioritizing the visualization of those features
that are present in one of the predicates of the rule. A future development com-
prises the possibility for the user to select the FI method among a given set,
allowing the users to confront different FI algorithms.

FIPER enables us to assess an instance’s ranking within the distributions of
individual features. We are enhancing the interface to permit instance editing,
granting users the capacity to modify specific feature values and delve into the
black box’s response. We are also actively developing a FIPER version that
visualizes counter rules, which are logical predicates based on features that result
in an alternate classification of the chosen instance.

Eventually, for specific explainers, like LORE in our instance, a synthetic
neighborhood is established around the instance to build the explanation. We
are working to add a layer of presentation of the distribution of feature values
within this neighborhood.
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