
Are Generative-based Graph Counterfactual
Explainers Worth It?

Mario Alfonso Prado-Romero1,[0000−0002−0491−3515], Bardh
Prenkaj2,[0000−0002−2991−2279], and Giovanni Stilo3,[0000−0002−2092−0213]

1 Gran Sasso Science Institute
2 Sapienza University of Rome

3 University of L’Aquila

Abstract. Counterfactual Explanation (CE) methods have gained trac-
tion as a means to provide recourse for users of AI systems. While widely
explored in domains like medical images and self-driving cars, Graph
Counterfactual Explanation (GCE) methods have received less atten-
tion. GCE explainers generate a new graph similar to the original but
with a different outcome according to the underlying prediction model.
Notably, generative machine learning methods have achieved remarkable
success in generating images with a particular art style and natural lan-
guage processing. In this study, we thoroughly examine the capabilities
of Generative GCE methods. Specifically, we analyse G-CounteRGAN, a
graph-specific adaptation of the CounteRGAN method, and compare its
performance against other generative explainers and a selection of search-
and heuristic-based explainers in the literature. Contrarily to heuristic-
based methods, we remark that generative approaches are extremely use-
ful to generate multiple counterfactuals by sampling the learned latent
space on the training data.

Keywords: Graph Counterfactual Explainability, · Generative Expla-
nations · Graph-to-Image

1 Introduction

Explainability is crucial in sensitive domains to enable users and service providers
to make informed and reliable decisions [10]. However, deep neural networks,
commonly used for generating predictions, often suffer from a lack of inter-
pretability, widely referred to as the “black-box” problem [22], hindering their
wide adoption in domains such as healthcare and finance. On the other end of
the spectrum of explainability, we find inherently interpretable “white-box” pre-
diction models [16], which are preferred for decision-making purposes [34]. Alas,

marioalfonso.prado@gssi.it, prenkaj@di.uniroma1.it
corresponding: giovanni.stilo@univaq.it

2 Prado-Romero, Prenkaj, and Stilo

black-box models demonstrate superior performance and generalisation capabil-
ities when dealing with high-dimensional data [2,6,8,11,18,27,28,29,35,37].

Recently, deep learning (relying on GNNs [30]) has been beneficial in solving
graph-based prediction tasks, such as community detection [41], link prediction
[38], and session-based recommendations [40,42]. Despite their remarkable per-
formance, GNNs are black boxes, making them unsuitable for high-impact and
high-risk scenarios. The literature has proposed several post-hoc explainability
methods to understand “what is happening under the hood” of the prediction
models. Specifically, counterfactual explainability is useful to understand how
modifications in the input lead to different outcomes. Similarly, a recent field
in Graph Counterfactual Explainability (GCE) has emerged [25] that aims at
producing counterfactuals for graphs.

We provide the reader with an example that helps clarify a counterfactual ex-
ample in graphs. Suppose we have a social network where a specific user U posts
an illicit advertisement, thus violating the Terms of Service (ToS). A counterfac-
tual explanation of U ’s account suspension would be “if the user had refrained
from writing the post about selling illegal goods, her account would not have been
banned”.

Generally, GCE methods can be search-, heuristic-, and learning-based ap-
proaches [25]. Search-based approaches find the counterfactual examples within
the data distribution: i.e., for a graph, G is the dataset G and a given predictor
Φ, they find a G′ ∈ G s.t. Φ(G) ̸= Φ(G′). In this way, the search for counter-
factuals is bound by the data distribution, which is not necessarily the reality.
In scenarios where access to the graph dataset G is unavailable, search-based
methods fail to produce a valid counterfactual, undermining their usefulness as
explainers. Heuristic-based approaches surpass this limitation because they per-
turb the original graph G into G′ such that Φ(G) ̸= Φ(G′) without accessing
the dataset G. In other words, G′ can be outside the data distribution of G′.
A substantial drawback of heuristic-based approaches is defining the perturba-
tion heuristic (e.g., rules), which comes after careful examination of the data.
These heuristic approaches often require domain expertise to express how the
input graph should be perturbed faithfully. For instance, producing valid coun-
terfactuals for molecules requires knowledge about atom valences and chemical
bonds. Contrarily, learning-based approaches learn the heuristic (e.g., reinforce-
ment learning) based on the data. This kind of explainer is trained on some
samples and can be used to produce a single counterfactual at inference time.

Within learning-based approaches, we identify generative strategies that al-
low us to produce multiple counterfactual examples from a learned latent space.
After training, generative approaches do not need access to the oracle Φ since
their latent space can be sampled to generate multiple valid counterfactuals for
a particular input graph. Generative approaches are important since they learn
the perturbation of the input autonomously (vs heuristics approaches), are not
confined to the data distribution (vs search approaches), and do not rely on
a learned mask to apply to the input to produce counterfactuals (vs learning
approaches).

Are Generative-based Graph Counterfactual Explainers Worth It? 3

This work investigates the behaviour of generative GCE methods compared
to search- and heuristic-based methods. We test SoA generative approaches
against search and heuristic methods, including two baseline. We also adapt
CounteRGAN [19] - namely G-CounteRGAN - on graph data, using the GRE-
TEL framework [23,26] and extend the experimental work in [24]. In more de-
tail, differently from [24], we discuss a critical yet important argument, i.e., can
generative approaches compete with search/heuristic baselines in producing valid
counterfactuals in large synthetic datasets? We argue that generative explain-
ers are crucial to produce multiple counterfactuals by sampling their learned
latent space. Additionally, differently from heuristic-based methods which have
a hard-coded perturbation strategy, generative approaches can potentially learn
this perturbation strategy and apply it to the sampled instances from the latent
space. This leads us to believe that generative approaches have the potential to
become akin to a Swiss-knife in GCE. Finally, we aim to provide readers with
initial insights into applying generative approaches for GCE, which still need to
be explored in the current literature.

The rest of the paper is organised as follows. Sec. 2 presents the related
work in GCE, focusing on generative approaches. Sec. 3 describes the problem
formulation. Sec. 4 illustrates how G-CounteRGAN works and its adaption to
the graph domain. Sec. 5.1 describes the datasets and their characteristics. Sec.
5 depicts the experiments and extensive discussions. Finally, Sec. 6 concludes
the paper.

2 Related Work

The eXplainable AI (XAI) literature distinguishes between inherently explain-
able and black-box methods [10]. Black-box methods can be further categorised
into factual and counterfactual explanation methods. Here, we concentrate on
counterfactual methods as categorised in [25] and exploit the same notation used
in that survey.

While many works provide counterfactual explanations for images/text (to
point out some [5,31,32,44,36,43,47]), only a few focus on graph classification
problems [1,14,17,20,21,33,39]. According to [25], GCE works are categorised
into search (heuristic) and learning-based approaches. We are aware that a new
branch of global (model-level) counterfactual explanations is being developed
(see [12]). Nevertheless, we concentrate only on instance-level explanations.
Search (heuristic) approaches. Search-based methods for generating coun-
terfactual explanations rely on a specific criterion, such as the similarity between
instances, to search for a suitable counterfactual within the dataset. On the other
hand, heuristic-based methods adopt a systematic approach to modify the input
graph until a valid counterfactual is obtained.

In this work, we adopted DDBS and OBS [1] because they are the cornerstone
for graph counterfactuality in the context of brain networks. These methods
represent the brain as a graph, where vertices correspond to well-established
regions of interest (ROIs) and edges represent connections between co-activated

4 Prado-Romero, Prenkaj, and Stilo

ROIs. DDBS and OBS employ a bidirectional search heuristic: first, they perturb
the edges of the input graph G until a counterfactual graph G′ is reached; then,
they rollback certain perturbations made in the initial stage, aiming to reduce
the distance between G and G′ while maintaining the counterfactual condition.
OBS selects edges for perturbation randomly, while DBS queries the dataset to
identify the most common edges for each class and leverages this information for
perturbation purposes. We point the reader to [3,14,39] for other search-based
methods.

Learning-based approaches. The methods belonging to this category share
a three-step pipeline: 1) generating masks that indicate the relevant features
given a specific input graph G; 2) combining the mask with G to derive a new
graph G′; 3) feeding G′ to the prediction model (oracle) Φ and updating the
mask based on the outcome Φ(G′). Without loss of generality, learning-based
strategies can be further divided into perturbation matrix [33], reinforcement
learning [20,21,39], and generative approaches [17] In the following, we report
the most recent and effective ones.

CF2 [33] generates factual explanations by balancing factual and counterfac-
tual reasoning. This method generates a factual graph, a subgraph of the original
input. Then, it produces a counterfactual by removing the factual subgraph from
the input, similarly to [3]. CF2 also considers the simplicity of the counterfactual
(i.e., a smaller explanation size is preferred). Despite being a factual method,
CF2 is included here because it inherently exhibits a counterfactual property
through the elimination of the factual subgraph.

MEG [21] and MACCS [39] employ multi-objective reinforcement learning
(RL) models to generate counterfactuals for molecules. Their domain-specificity
limits their applicability and makes them difficult to port on other domains. The
reward function incorporates a task-specific regularisation term that influences
the choice of the next action to perturb the input. Similarly, MACDA [20] uses
RL to produce counterfactuals for the drug-target affinity prediction problem.

CLEAR [17] is a generative method that relies on a variational autoencoder
(VAE). The encoder maps each graph G to a latent representation Z, and the
decoder generates the counterfactual based on Z. The generation of counter-
factuals is conditioned on G and a desired class c ̸= Φ(G). As per how a VAE
works, the generated counterfactuals are complete graphs with stochastic weights
on the edges. Therefore, the authors use a sampling procedure to produce valid
counterfactuals. Notice, however, that during the decoding process, the order of
the vertices in G differs from that in G′. Hence, a graph matching step between
G and G′ is necessary, which can be time-consuming due to approximating the
NP-hard problem [15].

As mentioned in Sec. 1, the method proposed in this work is an adaptation
of CounteRGAN [19]. Although originally not proposed for graphs, CounteR-
GAN is a generative approach for image-based counterfactual explanations for a
specific explainee class c ∈ C. It employs a GAN with residual connections and
an underlying classifier to generate valid and plausible counterfactuals for the
input. This way, the generator network learns to produce counterfactuals for the

Are Generative-based Graph Counterfactual Explainers Worth It? 5

input with outcome c. Unlike CLEAR, it does not sample the latent space of
the generator to produce multiple counterfactuals for the same input instance.
Instead, CounteRGAN binarises the real values of the generator’s latent space
according to a user-defined threshold, thus giving a unique solution. Neverthe-
less, CounteRGAN requires multiple trained GAN architectures, each of whose
generators are responsible for explaining one class c ∈ C, making it unfeasible
for multi-class classification problems4.

3 Problem Formulation

Fig. 1. Given the separation line learned from the prediction model Φ, we can classify
instances into two classes. We show three instances G1, G2, and G3 such that Φ(G1) = 0
and Φ(G2) = Φ(G3) = 1. Because G2 and G3 are classified differently from G1, they
are valid counterfactuals. However, our goal is to find counterfactuals whose similarity
is the highest according to a particular function S. Here, S(G1, G3) ≥ S(G1, G2) which
makes G3 the counterfactual with minimal changes w.r.t. G1.

Here, we provide the ground formalisation on which our method is based. The
literature has formulated a plethora of definitions of what is a counterfactual ex-
planation. Generally, given a graph G, a counterfactual explanation G′ satisfies
the condition Φ(G) ̸= Φ(G′), where Φ is a particular prediction model. Never-
theless, this counterfactual definition is under-specified since we are interested
in having a counterfactual G′ with minimal changes w.r.t. the original graph G
and not just one that lies on the other side of the decision boundary (see Fig.
1). We rely on the notation introduced in [25] which is a general formulation
for multi-class classification problems easily adaptable to a binary classification
scenario.

Definition 1 (Graph Counterfactual). Given a graph G = (V,E) where
V = {v1, . . . , vn} is the set of vertices and E = {(vi, vj) | vi, vj ∈ V } is the set

4 Note that, the authors tested CounteRGAN only on a binary classification scenario.

6 Prado-Romero, Prenkaj, and Stilo

of edges, a prediction model Φ that classifies G into a class c ∈ C. The set of
counterfactuals of G can be defined as in Eq. 1.

s(c′, G) := max
G′∈G′,G ̸=G′

{S(G,G′) | Φ(G′) = c′}

EΦ(G) =
⋃

c′∈C−{c}

{G′ ∈ G′ | G ̸= G′,S(G,G′) = s(c′, G)} (1)

The previous definition supposes a function S(G,G′), which measures the simi-
larity between the graph G and its counterfactual G′. Eq. 1 returns a set of mini-
mally changed counterfactuals w.r.t. the input graph G for each class c′ ∈ C−{c}
where c = Φ(G). Notice that adapting this equation to the binary scenario is
straightforward.:

EΦ(G) = argmax
G′∈G′,G ̸=G′,Φ(G) ̸=Φ(G′)

S(G,G′) (2)

Notice that Eq. 2 produces a single5 counterfactual instance G′ that is the most
similar to G. The “search” for the counterfactuals is conditioned such that the
returned instance G′ is different6 from G.

The similarity function between two graphs, G and G′, can consider the ver-
tex attributes, edge features, and graph structure. Without loss of generality,
G can be embedded [4] into a latent space (e.g., via graph convolutional lay-
ers). Then, this embedding can be exploited to calculate the similarity (e.g.,
cosine similarity) with G′ that has been embedded into the same latent space.
Notice that the choice of the similarity function induces the production of the
counterfactual explanations, leading us to believe that a more principled way of
generating graph counterfactuals is needed for future research.

4 G-CounteRGAN

Here, we discuss the theoretical novelty we introduced to adapt the original
method to propose G-CounteRGAN. CounteRGAN [19] uses a GAN with resid-
ual connections [48] and a prediction model - hereafter oracle - to produce
meaningful counterfactuals. CounteRGAN was originally proposed for gener-
ating grey-scale image counterfactuals. However, we adapted it for graphs and
named it G-CounteRGAN. Notice that a graph can be transformed into an ad-
jacency tensor A ∈ R|V |×|V |×d. We assume each edge can have an associated
d-dimensional vector of (normalised) weights. More formally, let F (vi, vj) ∈ Rd

denote the weight vector of edge e = (vi, vj). Then, the adjacency tensor corre-
sponding to graph G = (V,E) is built as follows.:

A[i, j] =

{
F (vi, vj) if e = (vi, vj) ∈ E

0⃗ d otherwise

5 Notice that multiple counterfactuals can maximise S w.r.t. G. In these cases, ties
are broken accordingly, and a single G′ is returned.

6 DDBS and OBS [1] return the original instance when their search heuristics fail to
produce a counterfactual. This paper aims to avoid this behaviour.

Are Generative-based Graph Counterfactual Explainers Worth It? 7

The adjacency tensor A can be seen as an image with d channels and rely on sim-
ple convolutional operations with multiple kernels to extract underlying features.
Throughout the remainder of the paper, we denote with A = {A1, . . . , An} the
dataset containing adjacency tensors of the original graphs; G, now, represents
a generator network, and D is a discriminator network.

A residual GAN generates residuals rather than complete synthetic data.
Given a generator network G and a discriminator network D, G and D are
trained in a min-max game where G seeks to maximise and D minimises the
following objective function:

LRGAN(G,D) = E
A∼pdata

[
logD(A)

]
+ E

Az∼pz

[
log(1−D(Az +G(Az)))

]
(3)

where G’s input Az ∈ Z is a latent variable sampled from a probability distri-
bution pz. Notice that, unlike vanilla GANs, the input to RGAN’s discriminator
is Az +G(Az) instead of G(Az) only. Notice that the RGAN restricts the latent
space of the generator to be the same as the input space, which alleviates the
mode collapse phenomenon that vanilla GANs suffer from.

G-CounteRGAN exploits a pre-trained oracle Φ to produce meaningful coun-
terfactuals for a specific class c. If we can access Φ’s gradients, G-CounteRGAN
optimises the following objective function:

LG-CounteRGAN(G,D) = LRGAN(G,D) + LΦ(G, c) +Reg(G,A) (4)

where c is the class to explain, and Reg(G,A) is a regularisation term that
controls the sparsity of the residuals (i.e., feature perturbations). Notice that, in
this scenario, to make the generator produce counterfactuals, Eq. 3 is modified
such that the generator takes in original input data and not noise:

LRGAN(G,A) = E
A∼pdata

logD(A) + E
A∼pdata

log

(
1−D(A+G(A))

)
(5)

Since sampling instances from the data distribution might induce G to generate
null residuals, LΦ(G, c) steers the generator away from this behaviour, making
it produce plausible counterfactuals. In other words, because the oracle Φ is
capable of classifying a generated instance A + G(A) into the explainee class c
or something different, i.e., ¬c, the generator G is induced to learn to generate
examples that are valid counterfactuals, hence belonging to ¬c. In this way, Φ
plays a crucial role in guiding the learning of the generator according to the
following objective:

LΦ(G, c) = E
A∼pdata

log

(
1[Φ(A+G(A)) ̸= c]

)
(6)

where 1[Φ(A+G(A)) ̸= c] is an indicator function that returns 1 if the generator
has produced a valid counterfactual w.r.t. class c; 0 otherwise.

Notice that Φ is a black-box model we try to explain. Since we cannot access
Φ’s gradients, we cannot optimise LΦ(G, c). Instead, we weigh the first term of

8 Prado-Romero, Prenkaj, and Stilo

LRGAN by the prediction scores of Φ. Hence, Eq. 4 is modified as follows:

LG-CounteRGAN(G,D) =

∑
A∈A

(
1[Φ(A) = c] · logD(A)

)
∑

A∈A 1[Φ(A) = c]

+
1

|A|
∑
A∈A

log(1−D(A+G(A))) +Reg(G,A)

(7)

where 1[Φ(A) = c] is an indicator function that returns 1 if Φ correctly classifies
the input adjacency matrix A into the explainee class c.

At inference, drawing inspiration from the sampling technique proposed in
CLEAR [17], counterfactuals are generated by selecting edges based on the edge
probabilities learned by the generator in the latent space. It is worth noting that
the sampling procedure maintains the node order due to our consideration of ad-
jacency tensors instead of graphs. This deliberate choice aids in circumventing
the graph-matching procedure, which significantly impacts the execution time
of CLEAR (ref. Sec. 5). Notice that one can repeat the sampling procedure of
the generator’s latent space multiple times to engender several plausible coun-
terfactuals. Among them, one could choose the one with the lowest Graph Edit
Distance (GED) to indicate the smallest number of perturbation steps from the
original graph to arrive to this particular counterfactual instance (see Sec. 5.2
and 5.3). However, sorting and selection criteria of the counterfactuals can be
user-specified according to the application scenario.

We train the generator to exclusively accept instances belonging to the class
we intend to explain7. Conversely, instances of the other classes are assigned as
real instances for the discriminator. Consequently, by training the discriminator
to distinguish between fake data (the generated counterfactuals) and real data
(those corresponding to the true counterfactual classes), the generator learns to
produce counterfactual instances conditioned on the instances from the explainee
class.

Fig. 2 provides a visual representation of Eq. 7, which illustrates the training
process of G-CounteRGAN8. For comprehensiveness, we also demonstrate how
the counterfactuals are generated during the inference phase through a single
forward step. It is important to note that the sampling procedure for the resid-
uals enables us to generate multiple counterfactuals for a given input adjacency
tensor.

5 G-CounteRGAN’s performance analysis

Here, we assess the performances of generative approaches against the other SoA
methods. First, we describe the adopted benchmarking datasets providing the

7 This is an architectural drawback since one needs to train |C| models (generators) to
explain all classes. At inference, we need to switch between the pre-trained generators
and access the one that explains a graph G of class Φ(G) to generate counterfactuals.

8 The implementation can be found at https://github.com/MarioTheOne/GRETEL.

https://github.com/MarioTheOne/GRETEL

Are Generative-based Graph Counterfactual Explainers Worth It? 9

1
2

3

4

5

67

1
2

3

4

5

67

1
2

3

4

5

67

1
2

3

4

5

67

T
ra
in
in
g

In
fe
re
n
ce

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Fig. 2. G-CounteRGAN’s workflow during training (up) and inference (down). The
weighted adjacency tensor A ∈ R|V |×|V |×d is transformed and fed to the generator,
which produces counterfactual residuals. The discriminator is trained on both real and
generated counterfactuals. The generator explains input instances at inference time by
sampling edges according to a learned probabilistic distribution of its latent space.

details on their generation process. Then, we describe the evaluation metrics and
the hyperparameters used to run each method (see Sec. 5.2). Finally, in Sec. 5.3,
we provide a detailed discussion on the performances of the compared methods.

5.1 Benchmarking Datasets

As noticed in [25], comparing SoA methods is a cumbersome task due to the
heterogeneity of datasets in the literature. Hence, we perform tests on three
synthetic datasets generated according to [26,45]. We use synthetic datasets since
they are structured and generated through a specific procedure, making them
easier to control and modify. This paper uses datasets that distinguish between
cyclic and acyclic (trees) graphs. Ying et al. [45] propose three simple steps to
generate this type of dataset:

1. Generate a base graph with specific characteristics, including the vertex and
edge number.

2. Generate well-known motifs or use handcrafted ones, ensuring the base graph
still needs to contain the motif to be added.

3. Connect the chosen motifs to the base graph while controlling for additional
similar motifs.

The resulting dataset can have two classes, graphs generated solely by the first
step labelled 0 and those following all three steps labelled 1. Fig. 3 shows two
instances from the two classes and highlights the motif added to the instance on
the left to produce that on the right. We report the characteristics of the three
datasets in Table 1. Notice that, due to the original (de)convolution operations of

10 Prado-Romero, Prenkaj, and Stilo

Fig. 3. Example of Tree-Cycles dataset instances. Instance (a) belongs to class 0; mean-
while, instance (b) belongs to class 1. The highlighted motif is a cyclic graph with a
user-defined maximum number of vertices (here 4).

G-CounteRGAN’s generator, the input adjacency tensor A ∈ R|V |×|V |×d must
satisfy |V | ≡ 0 (mod 4) which is a substantial short-coming considering the
unconstrained aspects of real-world graphs.

Table 1. The dataset characteristics. |G| is the number of instances; µ(|V |) and σ(|V |)
represent the mean and std of the number of vertices per instance; µ(|E|) and σ(|E|)
represent the mean and std of the number of edges per instance; |Ci| is the number of
instances in class i ∈ {0, 1}. |Test set| represents the instances evaluated in each fold.

|G| µ(|V |) σ(|V |) µ(|E|) σ(|E|) |C0| |C1| Class distr. |Test set|

Tree-Cycles@28 500 28 0 27.566 0.621 252 248 0.504 : 0.496 50
Tree-Cycles@32 500 32 0 31.542 0.620 263 237 0.526 : 0.474 50
Tree-Cycles@48 500 48 0 47.568 0.627 253 247 0.506 : 0.494 50

5.2 Evaluation metrics and hyperparameter choice

We follow the suggestion in [25] to evaluate each method and use multiple metrics
to show a complete and fair assessment. To this end, we exploit the following
evaluation metrics:

– Runtime measures the time the explainer takes to produce a counterfactual.
We perform this measure on the same hardware and software platform for
an impartial comparison among the methods.

– Graph Edit Distance (GED) quantifies the structural distance between the
graph G and its counterfactual G′. More formally, given a set of actions
(vertex or edge addition/removals) {p1, . . . , pn} ∈ P(G,G′), that depict the
path to transform G into G′, with a corresponding cost w(pi), then GED =
min{p1,...,pn}∈P(G,G′)

∑n
i=1 w(pi).

– Oracle calls [1] quantifies the times the explainer asks the oracle to produce
a counterfactual.

– Oracle accuracy evaluates the oracle’s performances in predicting outcomes.
For a given graphG and its true label yG, it is equal to χ(G) = 1[Φ(G) = yG].

Are Generative-based Graph Counterfactual Explainers Worth It? 11

Algorithm 1 iRand: Iteratively permute edges to produce a counterfactual.

Require: G = (V,E), α ∈ (0, 1), Φ, T ∈ N+

1: K ← ⌊α · |E|⌋
2: for i = 1 to K do
3: for t = 1 to T do ▷ Try generating the counterfactual at most T times
4: E′ ← E
5: Ei ← sample(V × V, i) ▷ Uniformly sample i pairs of vertices
6: for (vi, vj) ∈ Ei do ▷ Perform edge addition/removal operations
7: if (vi, vj) ∈ E then
8: E′ ← E′ − {(vi, vj)} ▷ Remove the edge if it exists
9: else
10: E′ ← E′ ∪ {(vi, vj)} ▷ Add it if it does not exist
11: end if
12: end for
13: G′ = (V,E′)
14: if Φ(G′) ̸= Φ(G) then ▷ Valid counterfactual found
15: return G′

16: end if
17: end for
18: end for
19: return G ▷ If everything fails, return the original G

Table 2. Hyperparameters of the methods for each dataset.

Methods

iRand CF2 CLEAR CounteRGAN

TreeCycles α = 0.15
T = 10

α = 0.6
λ = 500

epochs = 100
lr = 104

batch size = 25
features = 8

num labels=2
epochs = 500

batch size = 25
iterations = 250

discriminator steps=3
generator steps=2

num labels=2
threshold = 0.5

– Correctness [9,26] verifies whether the explainer can produce a valid coun-
terfactual. It is defined as 1[Φ(G) ̸= Φ(G′)].

– Sparsity [46] measures the similarity between the input graph and its coun-
terfactual according to the input attributes. We rely on sparsity’s definition

of [25] as D(G,G′)
|G| where D(·, ·) measures the distance between its input pa-

rameters. Notice that G and G′ have vertex, edge, and graph attributes,
which are taken into account by the distance function.

– Fidelity [46] measures how faithful the counterfactuals are to the oracle
considering their correctness. It is defined as χ(G)− 1[Φ(G′) = yG].

We compare two generative approaches (i.e., G-CounteRGAN and CLEAR [17])
with two SoA methods (i.e., OBS [1] and CF2 [33]) and two baselines methods
(i.e., DCE and iRand). DCE [7], first used as a baseline in [1], searches for a
counterfactual G∗ such that G∗ = argmaxG′∈G′,Φ(G)̸=Φ(G′) S(G,G′). Moreover,
we propose an additional baseline, iRand, to verify whether the learning-based

12 Prado-Romero, Prenkaj, and Stilo

Table 3. Performances of G-CounteRGAN and SoTA methods on all datasets. † sym-
bolises learning-based approaches; ‡ indicates generative approaches; ∗ depicts search
(heuristic) methods. Bold values are the best overall; underlined are second-best on
average per dataset.

Dataset Method Runtime ↓ GED ↓ Oracle calls ↓ Correctness ↑ Sparsity ↓ Fidelity ↑ Oracle accuracy ↑

T
re
e-
C
y
cl
es
@
2
8 DCE ∗ 0.125 42.570 501.000 1.000 0.766 1.000 1.000

OBS ∗ 0.067 49.444 139.545 0.965 0.889 0.965 1.000
iRand ∗ 0.218 0.588 484.599 0.569 0.011 0.569 1.000
CF2 † 0.581 27.566 0.000 0.496 0.496 0.496 1.000
CLEAR ‡ 22.121 64.006 0.000 0.504 1.152 0.504 1.000
G-CounteRGAN ‡ 4.120 271.822 0.000 0.524 4.893 0.524 1.000

T
re
e-
C
y
cl
es
@
3
2 DCE ∗ 0.143 50.112 501.000 1.000 0.788 1.000 1.000

OBS ∗ 0.143 57.542 159.260 0.964 0.905 0.964 1.000
iRand ∗ 0.339 0.590 627.342 0.575 0.009 0.575 1.000
CF2 † 0.412 31.542 0.000 0.474 0.496 0.474 1.000
CLEAR ‡ 30.227 80.351 0.000 0.526 1.265 0.526 1.000
G-CounteRGAN ‡ 0.298 359.698 0.000 0.504 5.659 0.504 1.000

T
re
e-
C
y
cl
es
@
4
8 DCE ∗ 0.214 82.000 501.000 1.000 0.858 1.000 1.000

OBS ∗ 0.147 89.268 237.678 0.935 0.934 0.935 1.000
iRand ∗ 1.627 0.533 1594.374 0.527 0.006 0.527 1.000
CF2 † 3.771 47.568 0.000 0.494 0.498 0.494 1.000
CLEAR ‡ 31.081 171.983 0.000 0.506 1.800 0.506 1.000
G-CounteRGAN ‡ 6.612 1121.550 0.000 0.506 117.737 0.506 1.000

(generative) methods generalise better than a random explainer. In detail, iRand
is an iterative approach that works as depicted by the Algorithm 1. At each iter-
ation, it adds/removes i edges from the input graph sampled from the Cartesian
product of its vertex set V . If the current iteration produces a valid counterfac-
tual, the procedure returns it. If the “search” for the counterfactual does satisfy
the condition in line 14 for T attempts, then iRand defaults to the input graph
G similarly to [1]. We expect this baseline performs a smaller number of changes
(perturbations) on the synthetic dataset since, intuitively, transforming a tree
into a graph requires the addition of a single edge (see Sec. 5.3). Lastly, Table
2 shows the hyperparameters used for those methods that incorporate them in
their explainability strategy.

5.3 Discussion and performance analysis

Table 3 depicts the performance of SoA methods on the test set (i.e., 10% of
|G|). For each method, we report averages on 10-fold cross-validation. Notice that
all methods share the same folds9 and the same portion of the train-test sets
on each fold. Oracles have been pre-trained on the entire dataset to mimic the
black-box behaviour where the explainer has no clue how the oracle was trained.
Hence, we report the same oracle accuracy for all explainers in each fold. For
the Tree-Cycles, we also can rely on an omniscient oracle that performs a graph
visit and verifies whether a vertex is visited twice, indicating the presence of a
cycle. This oracle never fails to identify trees and graphs, thus reaching perfect
accuracy. Excluding the oracles’ performances allows the reader to understand

9 The folds contain the same instances.

Are Generative-based Graph Counterfactual Explainers Worth It? 13

each explainer’s limitations and benefits better. Having defined the same view
of data and underlying oracle, we can reasonably compare all explainers. Addi-
tionally, trained methods (i.e., CLEAR, CF2, G-CounteRGAN) do not need to
access the oracle at inference (test) time. However, to be consistent with other
methods, we report the number of oracles calls at training time for them.

In Tree-Cycles, all methods exhibit the same correctness and fidelity. Re-
call that fidelity measures the faithfulness of counterfactual explanations to the
oracle’s predictions. Since the oracle always predicts the correct class, fidelity
consistently aligns with the oracle’s prediction (yielding a value of 1 for χ(G)).
The 1[Φ(G′) = yG] component depends on the explainer’s ability to generate
valid counterfactuals. In this scenario, misclassifications can be attributed to
the explainer’s limitations in producing valid counterfactuals due to the oracle’s
infallibility.

DCE has the highest correctness across the board for all Tree-Cycles dataset
variants since it guarantees finding a valid counterfactual. Due to its inherent
searching mechanism, DCE might suffer from higher GED scores. As expected,
iRand has correctness slightly above the chance level, constituting the baseline
for other learning methods that systematically fail to surpass. Additionally, it
has the best GED. We argue that one needs to add a single edge to produce a
counterfactual for a tree (i.e., a graph). Similarly, to produce a counterfactual for
a graph (i.e., a tree), one must remove at most |E|− |V |+1 edges. Nevertheless,
we noticed that iRand is bad at breaking cycles, thus defaulting to return the
original instance (line 20 of Algorithm 1). As per how GED is defined, if the
”counterfactual” returned is the original instance, then GED is equal to 0, ob-
scuring the real performances. CF2 is the second best in terms of GED, but it is
the worse w.r.t. the other learning methods in terms of correctness (i.e., ∼ 0.488
on average). The low GED of CF2 results from its factual-based reasoning to gen-
erate counterfactuals. In other words, CF2 first finds the factual graph and then
produces the counterfactual as the remainder (i.e., without the factual) on the
original input. The two generative methods, CLEAR and G-CounteRGAN, have
the worst GED across the board, respectively, at the penultimate and last place.
For G-CounteRGAN, because it does not support vertex additions/removals,
we found that the model can produce valid counterfactuals for a given tree in
input by simply connecting each vertex with another one, thus producing a com-
plete graph. Contrarily, G-CounteRGAN cannot cut down edges when the input
is a cyclic graph. Due to this shortcoming, the correctness of the chance level
is justified (i.e., half of the time, the explainer is right at generating a valid
counterfactual). CLEAR, on the other hand, has better GED, correctness, and
sparsity than G-CounteRGAN. We believe a GAN approach requires far more
epochs to perform equally well as a VAE (see Table 2). However, CLEAR has
the highest runtime across the board due to the graph-matching phenomenon
after sampling from the latent space. CF2 performs 4.5k oracle calls, CLEAR
225k, and G-CounteRGAN 337.5k.

Table 3 delineates that learning-based explainers cannot compete with a sim-
ple search (heuristic) approaches to produce valid counterfactuals. This lack of

14 Prado-Romero, Prenkaj, and Stilo

performance might undermine the usefulness of generative approaches in explain-
ability, especially in critical domains. However, we argue that optimising these
models and training them for longer times would result in improved performances
[13]. Generative counterfactual models possess enormous potential for future re-
search since one can generate multiple counterfactual examples by sampling the
generator’s latent space [17,19]. We believe that more graph-suitable convolution
operations on G-CounteRGAN (e.g., GCNs) would improve the performances of
the overall architecture since they integrate message-passing mechanisms within
the neighbourhood of a particular vertex and do not view the graph as a flat-
tened structure as is the case with mere 2D convolutional operations.

Finally, hereafter, we discuss anecdotally the counterfactual graphs gener-

G-CounteRGAN CLEAR DCEOriginal Graph

Tr
ee

C
yc

lic
 G

ra
p

h

Fig. 4. Counterfactual produced by G-CounteRGAN, CLEAR, and the optimistic base-
line DCE on Tree-Cycles@28. As in the original graph, green edges are additions, red
ones are removals, and black ones are maintained. An × denotes an invalid counterfac-
tual, and a ✓is valid.

ated by the compared methods. Fig. 4 illustrates three methods that generate
counterfactuals for both classes (i.e., tree and cyclic graph). We select the coun-
terfactual with the lowest GED from the original graph for G-CounteRGAN and
qualitatively assess how the other two methods cope with the same instance. No-
tice that G-CounteRGAN (in the tree-to-graph scenario) learns to produce an
almost complete graph which is correct but very far away10 from the original
graph, confirming our intuition about its high GED scores. In the other scenario
- i.e., graph-to-tree - both generative methods fail (see green edges) to produce
a valid counterfactual; hence, their chance-level correctness. DCE never fails to
produce a valid counterfactual (see Table 3), although the counterfactuals may
seem cluttered visually. We notice that generating a counterfactual for a cyclic
graph is a difficult task since the explainer needs to understand what are the
edges that need to be removed such that the cycles are broken and what edges

10 One needs a single edge between any pair of vertices (vi, vj) in a tree G = (V,E),
s.t. e = (vi, vj) /∈ E, to form a cycle, hence producing a valid counterfactual.

Are Generative-based Graph Counterfactual Explainers Worth It? 15

can be safely added without introducing new cycles, provided that the method
does not support vertex additions/removals. Despite its apparent simplicity, this
synthetic case represents a hard and prototypical problem that must be included
in all future investigations of the GCE research field.

6 Conclusion

We defined the GCE problem and discussed the latest developments in the
field. Specifically, we thoroughly analysed the effectiveness of current gener-
ative models applied to GCE generation. We detailed the implementation of
G-CounteRGAN, an adaptation of the CounteRGAN explainer to the graph do-
main, by considering the adjacency tensor as a special grey-scale image with d
channels. By exploiting the learned latent space of the generator, we can produce
multiple counterfactual explanations by sampling the edge probability encoded
therein. To assess the effectiveness of this approach, we compared it against an-
other generative explainer and other heuristic and search-based GCE methods.
Our quantitative and qualitative analysis revealed that most learning-based ex-
plainers need help understanding the nature of the problem in our test dataset.
Lastly, the integration of graph-based convolution operations could improve the
performances of G-CounteRGAN, leading to the rise of a potential new field in
GCE, that of Generative GCE (i.e., GenGCE).

Acknowledgement

This work is partially supported by European Union - NextGenerationEU - National

Recovery and Resilience Plan (Piano Nazionale di Ripresa e Resilienza, PNRR) -

Project: SoBigData.it - Strengthening the Italian RI for Social Mining and Big Data

Analytics - Prot. IR0000013 - Avviso n. 3264 del 28/12/2021, XAI: Science and tech-

nology for the eXplanation of AI decision - ERC Advanced Grant 2018 G.A. 834756

and by the HPC & Big Data Laboratory of DISIM, University of L’Aquila (https:

//www.disim.univaq.it/).

References

1. Abrate, C., Bonchi, F.: Counterfactual graphs for explainable classification of brain
networks. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. pp. 2495–2504 (2021)

2. Aragona, D., Podo, L., Prenkaj, B., Velardi, P.: Coronna: a deep sequential frame-
work to predict epidemic spread. In: Proceedings of the 36th Annual ACM Sym-
posium on Applied Computing. pp. 10–17 (2021)

3. Bajaj, M., Chu, L., Xue, Z.Y., Pei, J., Wang, L., Lam, P.C.H., Zhang, Y.: Ro-
bust counterfactual explanations on graph neural networks. Advances in Neural
Information Processing Systems 34, 5644–5655 (2021)

4. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embed-
ding: Problems, techniques, and applications. IEEE transactions on knowledge and
data engineering 30(9), 1616–1637 (2018)

https://www.disim.univaq.it/
https://www.disim.univaq.it/

16 Prado-Romero, Prenkaj, and Stilo

5. Dabkowski, P., Gal, Y.: Real time image saliency for black box classifiers. Advances
in neural information processing systems 30 (2017)

6. Ding, M., Yang, K., Yeung, D.Y., Pong, T.C.: Effective feature learning with un-
supervised learning for improving the predictive models in massive open online
courses. In: Proceedings of the 9th international conference on learning analytics
& knowledge. pp. 135–144 (2019)

7. Faber, L., Moghaddam, A.K., Wattenhofer, R.: Contrastive graph neural network
explanation. In: Proc. of the 37th Graph Repr. Learning and Beyond Workshop at
ICML 2020. p. 28. Int. Conf. on Machine Learning (2020)

8. Feng, W., Tang, J., Liu, T.X.: Understanding dropouts in moocs. In: Proceedings
of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 517–524 (2019)

9. Guidotti, R.: Counterfactual explanations and how to find them: literature review
and benchmarking. Data Mining and Knowledge Discovery pp. 1–55 (2022)

10. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM computing surveys
(CSUR) 51(5), 1–42 (2018)

11. Huang, K., Xiao, C., Glass, L.M., Zitnik, M., Sun, J.: Skipgnn: predicting molecular
interactions with skip-graph networks. Scientific reports 10(1), 1–16 (2020)

12. Huang, Z., Kosan, M., Medya, S., Ranu, S., Singh, A.: Global counterfactual ex-
plainer for graph neural networks. In: Proceedings of the Sixteenth ACM Interna-
tional Conference on Web Search and Data Mining. pp. 141–149 (2023)

13. Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., Houlsby, N.:
Big transfer (bit): General visual representation learning. In: Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part V 16. pp. 491–507. Springer (2020)

14. Liu, Y., Chen, C., Liu, Y., Zhang, X., Xie, S.: Multi-objective explanations of gnn
predictions. In: 2021 IEEE International Conference on Data Mining (ICDM). pp.
409–418. IEEE (2021)

15. Livi, L., Rizzi, A.: The graph matching problem. Pattern Analysis and Applications
16, 253–283 (2013)

16. Loyola-González, O.: Black-box vs. white-box: Understanding their advantages and
weaknesses from a practical point of view. IEEE Access 7, 154096–154113 (2019)

17. Ma, J., Guo, R., Mishra, S., Zhang, A., Li, J.: CLEAR: gen-
erative counterfactual explanations on graphs. In: NeurIPS
(2022), http://papers.nips.cc/paper_files/paper/2022/hash/

a69d7f3a1340d55c720e572742439eaf-Abstract-Conference.html

18. Madeddu, L., Stilo, G., Velardi, P.: A feature-learning-based method for the
disease-gene prediction problem. International Journal of Data Mining and Bioin-
formatics 24(1), 16–37 (2020)

19. Nemirovsky, D., Thiebaut, N., Xu, Y., Gupta, A.: Countergan: Generating counter-
factuals for real-time recourse and interpretability using residual gans. In: Cussens,
J., Zhang, K. (eds.) Uncertainty in Artificial Intelligence, Proceedings of the Thirty-
Eighth Conference on Uncertainty in Artificial Intelligence, UAI 2022, 1-5 August
2022, Eindhoven, The Netherlands. Proceedings of Machine Learning Research,
vol. 180, pp. 1488–1497. PMLR (2022), https://proceedings.mlr.press/v180/
nemirovsky22a.html

20. Nguyen, T.M., Quinn, T.P., Nguyen, T., Tran, T.: Explaining black box drug target
prediction through model agnostic counterfactual samples. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics (2022)

http://papers.nips.cc/paper_files/paper/2022/hash/a69d7f3a1340d55c720e572742439eaf-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/a69d7f3a1340d55c720e572742439eaf-Abstract-Conference.html
https://proceedings.mlr.press/v180/nemirovsky22a.html
https://proceedings.mlr.press/v180/nemirovsky22a.html

Are Generative-based Graph Counterfactual Explainers Worth It? 17

21. Numeroso, D., Bacciu, D.: Meg: Generating molecular counterfactual explanations
for deep graph networks. In: 2021 International Joint Conference on Neural Net-
works (IJCNN). pp. 1–8. IEEE (2021)

22. Petch, J., Di, S., Nelson, W.: Opening the black box: the promise and limitations of
explainable machine learning in cardiology. Canadian Journal of Cardiology (2021)

23. Prado-Romero, M.A., Prenkaj, B., Stilo, G.: Developing and evaluating graph
counterfactual explanation with gretel. In: Proceedings of the Sixteenth ACM In-
ternational Conference on Web Search and Data Mining. pp. 1180–1183 (2023)

24. Prado-Romero, M.A., Prenkaj, B., Stilo, G.: Revisiting countergan for counterfac-
tual explainability of graphs. In: Maughan, K., Liu, R., Burns, T.F. (eds.) The First
Tiny Papers Track at ICLR 2023, Tiny Papers @ ICLR 2023, Kigali, Rwanda, May
5, 2023. OpenReview.net (2023), https://openreview.net/pdf?id=d0m0Rl15q3g

25. Prado-Romero, M.A., Prenkaj, B., Stilo, G., Giannotti, F.: A survey on graph
counterfactual explanations: Definitions, methods, evaluation, and research chal-
lenges. ACM Comput. Surv. (2023). https://doi.org/10.1145/3618105, https:

//doi.org/10.1145/3618105

26. Prado-Romero, M.A., Stilo, G.: Gretel: Graph counterfactual explanation evalu-
ation framework. In: Proceedings of the 31st ACM International Conference on
Information & Knowledge Management. pp. 4389–4393 (2022)

27. Prenkaj, B., Distante, D., Faralli, S., Velardi, P.: Hidden space deep sequential
risk prediction on student trajectories. Future Generation Computer Systems 125,
532–543 (2021)

28. Prenkaj, B., Aragona, D., Flaborea, A., Galasso, F., Gravina, S., Podo, L., Reda,
E., Velardi, P.: A self-supervised algorithm to detect signs of social isolation in
the elderly from daily activity sequences. Artificial Intelligence in Medicine 135,
102454 (2023)

29. Prenkaj, B., Velardi, P., Distante, D., Faralli, S.: A reproducibility study of deep
and surface machine learning methods for human-related trajectory prediction. In:
Proceedings of the 29th ACM International Conference on Information & Knowl-
edge Management. pp. 2169–2172 (2020)

30. Scarselli, F., Gori, M., Tsoi, A., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. on Neural Networks 20(1), 61–80 (2008)

31. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
Proceedings of the IEEE international conference on computer vision. pp. 618–626
(2017)

32. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
Visualising image classification models and saliency maps. In: Bengio, Y., LeCun,
Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Workshop Track Proceedings (2014), http:
//arxiv.org/abs/1312.6034

33. Tan, J., Geng, S., Fu, Z., Ge, Y., Xu, S., Li, Y., Zhang, Y.: Learning and evaluating
graph neural network explanations based on counterfactual and factual reasoning.
In: Proceedings of the ACM Web Conference 2022. p. 1018–1027. WWW ’22,
Association for Computing Machinery, New York, NY, USA (2022), https://doi.
org/10.1145/3485447.3511948

34. Verenich, I., Dumas, M., La Rosa, M., Nguyen, H.: Predicting process performance:
A white-box approach based on process models. Journal of Software: Evolution and
Process 31(6), e2170 (2019)

https://openreview.net/pdf?id=d0m0Rl15q3g
https://doi.org/10.1145/3618105
https://doi.org/10.1145/3618105
https://doi.org/10.1145/3618105
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
https://doi.org/10.1145/3485447.3511948
https://doi.org/10.1145/3485447.3511948

18 Prado-Romero, Prenkaj, and Stilo

35. Verma, H., Mandal, S., Gupta, A.: Temporal deep learning architecture for pre-
diction of covid-19 cases in india. Expert Systems with Applications 195, 116611
(2022)

36. Vermeire, T., Brughmans, D., Goethals, S., de Oliveira, R.M.B., Martens, D.: Ex-
plainable image classification with evidence counterfactual. Pattern Analysis and
Applications 25(2), 315–335 (2022)

37. Wang, W., Yu, H., Miao, C.: Deep model for dropout prediction in moocs. In:
Proceedings of the 2nd international conference on crowd science and engineering.
pp. 26–32 (2017)

38. Wei, X., Liu, Y., Sun, J., Jiang, Y., Tang, Q., Yuan, K.: Dual subgraph-based
graph neural network for friendship prediction in location-based social networks.
ACM Transactions on Knowledge Discovery from Data (TKDD) (2022)

39. Wellawatte, G.P., Seshadri, A., White, A.D.: Model agnostic generation of coun-
terfactual explanations for molecules. Chemical science 13(13), 3697–3705 (2022)

40. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommen-
dation with graph neural networks. In: Proceedings of the AAAI conference on
artificial intelligence. vol. 33, pp. 346–353 (2019)

41. Wu, X., Xiong, Y., Zhang, Y., Jiao, Y., Shan, C., Sun, Y., Zhu, Y., Yu, P.S.:
Clare: A semi-supervised community detection algorithm. In: Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. pp.
2059–2069 (2022)

42. Xu, L., Xi, W., Wang, C.: Session-based recommendation with heterogeneous
graph neural networks. In: International Joint Conference on Neural Net-
works, IJCNN 2021, Shenzhen, China, July 18-22, 2021. pp. 1–8. IEEE (2021).
https://doi.org/10.1109/IJCNN52387.2021.9533519, https://doi.org/10.1109/

IJCNN52387.2021.9533519

43. Xu, Z., Lamba, H., Ai, Q., Tetreault, J., Jaimes, A.: Counterfactual editing for
search result explanation. arXiv preprint arXiv:2301.10389 (2023)

44. Yang, L., Kenny, E., Ng, T.L.J., Yang, Y., Smyth, B., Dong, R.: Generating plau-
sible counterfactual explanations for deep transformers in financial text classifica-
tion. In: Proceedings of the 28th International Conference on Computational Lin-
guistics. pp. 6150–6160. International Committee on Computational Linguistics,
Barcelona, Spain (Online) (Dec 2020). https://doi.org/10.18653/v1/2020.coling-
main.541, https://aclanthology.org/2020.coling-main.541

45. Ying, Z., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: Gnnexplainer: Gener-
ating explanations for graph neural networks. In: Wallach, H.M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada. pp. 9240–9251 (2019), https://proceedings.neurips.cc/paper/2019/
hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html

46. Yuan, H., Yu, H., Gui, S., Ji, S.: Explainability in graph neural networks: A tax-
onomic survey. IEEE Transactions Pattern Analaysis and Machine Intelligence
45(5), 5782–5799 (2023). https://doi.org/10.1109/TPAMI.2022.3204236, https:
//doi.org/10.1109/TPAMI.2022.3204236

47. Zemni, M., Chen, M., Zablocki, E., Ben-Younes, H., Pérez, P., Cord, M.: Octet:
Object-aware counterfactual explanations. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). pp. 15062–15071
(June 2023)

https://doi.org/10.1109/IJCNN52387.2021.9533519
https://doi.org/10.1109/IJCNN52387.2021.9533519
https://doi.org/10.1109/IJCNN52387.2021.9533519
https://doi.org/10.18653/v1/2020.coling-main.541
https://doi.org/10.18653/v1/2020.coling-main.541
https://aclanthology.org/2020.coling-main.541
https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html
https://doi.org/10.1109/TPAMI.2022.3204236
https://doi.org/10.1109/TPAMI.2022.3204236
https://doi.org/10.1109/TPAMI.2022.3204236

Are Generative-based Graph Counterfactual Explainers Worth It? 19

48. Zhang, L., Long, C., Zhang, X., Xiao, C.: Ris-gan: Explore residual and illumina-
tion with generative adversarial networks for shadow removal. In: Proceedings of
the AAAI Conference on Artificial Intelligence. vol. 34, pp. 12829–12836 (2020)

	Are Generative-based Graph Counterfactual Explainers Worth It?

