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Abstract. Gender bias is one of the types of bias studied in fair machine
learning (ML), which seeks equity in the predictions made by ML models.
Bias mitigation is often based on protecting the sensitive attribute (e.g.
gender or race) by optimising some fairness metrics. However, reducing
the relevance of the sensitive attribute can lead to higher error rates. This
paper analyses the relationship between gender bias and misclassification
using explainable artificial intelligence. The proposed method applies
clustering to identify groups of similar misclassified instances between
false positive and false negative predictions. These prototype instances
are then further analysed using Break-down, a local explainer. Positive
and negative feature contributions are studied for models trained with
and without gender data, as well as using bias mitigation methods. The
results show the potential of local explanations to understand different
forms of gender bias in misclassification, which are not always related to
a high feature contribution of the gender attribute.

Keywords: Fair machine learning · Gender bias · Explainable artificial
intelligence · Clustering

1 Introduction

The rise of AI-based systems has prompted the need to analyse how their meth-
ods work and what the implications of their results are. Many automatically
constructed decision models, such as those using machine learning (ML), are
opaque or difficult to understand. As a result, users may distrust their predic-
tions and lose confidence in the benefits of AI. One of the causes of distrust is
the fact that ML models are not infallible. In contexts such as medicine, a wrong
prediction can have serious consequences, so it is important to understand when
and why a predictive model makes mistakes [13].

⋆ Funding: GENIA project funded by the Annual Research Plan of University
of Córdoba (UCOImpulsa mod., 2022). Grant PID2020-115832GB-I00 funded by
MICIN/AEI/10.13039/501100011033. Andalusian Regional Government (postdoc-
toral grant DOC 00944).
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Another aspect influencing users’ perception of ML is the presence of bias,
which arises not only as a consequence of data collection, but also of the train-
ing process itself. Fair ML is the field that characterises and studies bias in
ML, providing metrics to detect bias and methods to mitigate biased decisions
based on gender, race or age [17]. Gender bias is a particular case that has
attracted attention recently due to the discovery of gender stereotyping in auto-
matic translation [19]. Gender bias also arises in AI systems aimed at supporting
biomedicine and healthcare, as the gender dimension is not taken into account in
many of their algorithmic procedures [6]. Face recognition systems are another
area where gender bias has recently been studied [15].

Despite the application of mitigation methods, the resulting models may still
be opaque, as the problem of using black-box baseline estimators persists. Reduc-
ing the contribution of sensitive attributes (e.g. gender) during model building
does not guarantee that biases have been completely eliminated. Other attributes
with high correlation with the decision variable and imbalanced presence for each
gender may still lead to biased decisions. In addition, improving fairness often
leads to a reduction in model performance [22], as false positive and false negative
rates tend to balance across categories of the sensitive attribute.

This paper proposes to jointly address both issues, i.e. misclassification and
gender bias, from the perspective of explainable artificial intelligence (XAI) [7].
XAI has emerged to improve the transparency of ML-based systems by pro-
viding methods to inspect black-box models and generate explanations of their
predictions [9]. Thus, XAI methods can help us to understand the nature of
misclassification and to analyse the extent to which it is related to gender bias.
The proposed approach first uses a clustering algorithm to identify prototype
instances among those misclassified for each gender. Next, instance-level expla-
nations are generated to analyse which features were most responsible for false
positive and false negative predictions. To provide an initial validation of the
approach, an experimental evaluation is presented using datasets often stud-
ied by the Fair ML community [12]. Experiments include different classification
algorithms, mitigation methods and strategies for omitting gender information.

The rest of the paper is structured as follows. Section 2 introduces concepts
related to Fair ML and XAI. Section 3 presents the approach based on cluster-
ing and local explanations to detect and explain gender bias. The experimental
methodology is described in Section 4, while results are presented and discussed
in Section 5. Section 6 concludes the paper with some lines of future work.

2 Background and related work

This section introduces and relates the various concepts surrounding this work.
Firstly, the field of Fair ML is presented in Section 2.1, focusing on the clas-
sification of mitigation methods and evaluation metrics. Section 2.2 elaborates
on the analysis of fairness from the XAI perspective. Approaches to explaining
errors made by ML models are summarised in Section 2.3.
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2.1 Fair ML and bias mitigation methods

As with human reasoning, ML algorithms are vulnerable to different types of
biases that can negatively affect the fairness of their automatic decisions [17].
Although different situations may occur, an algorithm is considered unfair when
it favours a particular group with respect to a sensitive (also known as pro-
tected) attribute [4]. The causes of unfair ML behaviour are often related to the
presence of biases in the training data, but can also arise as a consequence of
how the algorithm is trained. Mehrabi et al. have characterised the types of bias
that ML systems can exhibit, associating them to the source (data, algorithm,
user) where the bias originates [17]. Biases in the data are due to non-random
sampling, omitted variables, lack of representation of the population or inade-
quate aggregations, among others. Biases in algorithms result from the choice
of certain optimisation and regularisation functions, as well as preference for
popular or frequent items. User-created bias occurs when training is based on
user-generated data, as their behaviour on platforms is influenced by social per-
ceptions, emotions and judgements.

Several methods have been proposed to avoid algorithmic discrimination,
which typically focus on identifying privileged and unprivileged groups based on
a single sensitive attribute [5]. A common classification is based on when a miti-
gation mechanism is introduced to detect and reduce bias [17]: 1) pre-processing
techniques modify the training data by applying some transformation that elim-
inates the bias, 2) in-processing techniques succeed in mitigating bias during
the training process, often by imposing some constraints related to the sensitive
attribute, and 3) post-processing techniques review the predictions made by the
ML model to reassign labels if a biased decision is detected.

Bias mitigation is assessed by fairness metrics, which look for equality in
the behaviour of the ML model for the privileged and unprivileged groups [23].
Two popular metrics are statistical parity difference and equalised odds differ-
ence [12], which contrast the quality of the predictions between the groups. It
should be noted that improving the ML model with respect to fairness metrics
could result in a decrease in predictive performance [4], so a trade-off should be
sought. In addition, a recent work has highlighted the limitations of mitigation
methods that optimise fairness metrics, as the reduction achieved in dissimilar-
ities between groups does not completely eliminate biases due to other complex
relationships between attributes [5]. As part of the collection of datasets for Fair
ML research, Le Quy et al. analyse the dependencies of protected attributes on
all other attributes (including the target one) using Bayesian networks [12].

2.2 Explaining algorithmic fairness

Since explainable methods inspect ML models to understand their behaviour and
results, some authors have applied them to analyse the extent to which the mod-
els are fair. In their study on gender bias in facial emotion recognition systems,
Manresa-Yee et al. used Protodash, a XAI technique to generate prototypical ex-
amples of both male and female facial expressions [15]. The prototypes obtained
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show the data bias present in the source dataset, with more female images asso-
ciated with expressions of sadness, fear and anger. The possibilities of XAI have
also recently been explored in the context of racial bias detection [14]. Here, the
authors analyse feature importance and local explanations using two post-hoc
explainable methods: Integrated Gradients and SHAP. Their experiment shows
that these methods were barely able to identify some of the dialectal expressions
associated with racial bias in the selected dataset.

Counterfactual explanations are also deeply related to fairness, as they could
be used to explain how a different value of a sensitive attribute would have
changed the model’s prediction. The term “counterfactual fairness” has been
coined to refer to this type of analysis [16]. According to this approach, a model
is said to be fair if an instance obtains the same prediction within its current
group or when it belongs to another group with respect to the sensitive attribute.

2.3 Explaining errors of machine learning models

Several studies have analysed the outputs of classification models and, in par-
ticular, the erroneous decisions they made. Alirezaie et al. applied symbolic
reasoning on the outputs of an image classifier in order to analyse the misidenti-
fied regions [1]. The inferred objects in the image represent the explanation, but
without associating them with the classifier’s decision structures. In the context
of a retail application, a local XAI method has been proposed to explain the
instances with the highest errors during the testing phase [13]. In this case, a
threshold is set to filter the instances, after which the correlation between pre-
diction and feature changes is studied. More recently, Rizzi et al. have applied
local XAI methods on each of the misclassified instances in order to determine
the features that most influence such wrong predictions [20]. The frequency with
which each feature appears in the misclassified instances is then studied.

Although not focused on error explanation, the work by Kim et al. [10] is
also related to this proposal. The authors present a method for selecting rep-
resentative instances (called prototypical examples) to explain the behaviour of
an image classifier. The prototypes are accompanied by counterexamples (called
“criticisms”) to provide a more complete explanation to the user. More specifi-
cally, they identify parts of the dataset that differ from the selected prototypes,
using a greedy algorithm. In their experiments they compare the prototype ex-
traction method with the k-medoids clustering algorithm.

3 Gender bias analysis with clustering and XAI methods

This section explains the proposed approach, which consists of three steps: 1)
Build classifiers, 2) Identify prototypes among the misclassified instances by
clustering, and 3) Generate local explanations for the prototypes.
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3.1 Building classifiers

This phase includes the usual procedure for training and testing a classification
model. To study gender bias, several classifiers will be considered:

– A classifier trained on the full dataset (CLfull). The aim is to obtain a
reference model for which no special consideration of gender is assumed.

– A classifier trained on the dataset excluding the gender attribute (CLnogen).
The aim is to generate a classification model in which gender information
is omitted, in order to understand how it influences performance and the
explanation of classification errors.

– Two classifiers, CLfem and CLmal, trained with data samples belonging to
each gender. The aim is to analyse whether gender-specific models are more
accurate and present different error distributions.

– A classifier with in-processing bias mitigation (CLmit−in). The aim is to
reduce potential bias during the training phase by exploring how it affects
model performance and, consequently, the type of misclassified instances.

– A classifier with post-processing bias mitigation (CLmit−post). The aim is
to reduce the potential bias after training to make a comparison with the
previous mitigation method.

Once the classifier is built, predictions are obtained in the test partition to
discern between correct and erroneous predictions. Misclassified instances are
identified as false positive (FP) or false negative (FN).

3.2 Clustering for prototype identification

At this stage the error analysis process begins, which is equivalent between FP
and FN. If the model is not gender-specific and the gender attribute has not
been omitted, the FP and FN groups will also be split by gender. The aim is to
find clusters of misclassified instances for each gender in order to detect areas
of the data distribution where the classifier tends to fail. A second objective
is to reduce the number of instances that would eventually be presented to a
user during the explanation phase, so that the analysis focuses on the most
representative ones. In addition, the prototypes should correspond to instances
of the dataset in order to be realistic for the user.

Due to these constraints, the choice of clustering algorithm is not straight-
forward. The Affinity Propagation (AP) [8] clustering algorithm has two char-
acteristics that make it suitable for our purpose: 1) it does not need to configure
the number of clusters to be discovered and 2) it locates, for each cluster, the
most representative instance, the so-called exemplar. AP relies on a “message
passing” strategy between instances to choose which of them is the best exem-
plar for other instances. At the same time, AP determines to which exemplar
each of the remaining instances should be associated.

As a result of this phase, we obtain a separation of the FP and FN instances
into k clusters. Note that the value of k need not be the same in both cases, and
may also vary depending on the gender subgroup. For each cluster there is also
an exemplar representing the prototype within the group.
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3.3 Local explanations

Each prototype identified in the previous step is explained using a local post-hoc
method. More specifically, Break-down is applied in this step [21] to obtain the
influence of each feature on the prediction. In Break-down, the prediction value is
expressed as the sum of the attribution received for each feature, which makes it
easy to interpret. Once the local explanation of each prototype is generated, the
feature contributions are inspected to find those more relevant, either positively
or negatively affecting the erroneous prediction.

4 Experimental methodology

This section details the experimental setup, datasets and classification algo-
rithms used to evaluate the proposed approach. For reproducibility purposes, all
experiments are available on a Zenodo repository.3

4.1 Research questions

The following research questions (RQ) are proposed to analyse the impact of
gender bias in ML misclassification:
RQ1 Do classifiers behave differently in terms of the number and nature of mis-
classified instances on the basis of gender information? To answer this question,
the subsets FP and FN of each classifier will be examined. In addition, the
characteristics of the clusters returned by AP will be analysed.
RQ2 Do local explanations of the prototypes expose a gender bias for some of the
classifiers? From the local explanations of the prototypes, the feature relevance
of their associated predictions will be studied to discover whether gender is a
potential cause of the erroneous prediction.

4.2 Datasets

Table 1 summarises the characteristics of the datasets used for experimenta-
tion. All of them represent tabular data. The Adult and Dutch census datasets
have been studied in the field of Fair ML [4, 11, 12] and are known to exhibit
gender bias. For the Adult dataset, the female subgroup is the unprivileged
group, whereas the male subgroup is the unprivileged group for the Dutch cen-
sus dataset. Notice that the Employee promotion dataset has not been included
in previous studies, but its analysis is interesting as it has a subtle bias not
directly related to the gender attribute.

The table shows the number of features and instances after removing irrele-
vant features (e.g. id) and missing values, respectively. The last column indicates
the target variable (class). A stratified data split of 30%/70% is applied to divide
into training and testing partitions.

3 https://doi.org/10.5281/zenodo.8200196
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Table 1: Characteristics of the datasets used for experimentation.
Dataset name Acronym Num. Feat. Num. Inst. Female/Male Perc. Target

Adult ADU 14 48832 33.15% / 66.85% income
Dutch census CEN 11 60420 50.10% / 49.90% occupation
Employee promotion EMP 12 46380 30.26% / 69.74% is promoted

4.3 Algorithms and evaluation metrics

The Random Forest (RF) and Gradient Boosting Tree (GBT) implementations
of sklearn [18] are used as classifiers for the first phase. The clustering algorithm,
AP, is also available in sklearn. Default parameters will be used for all algorithms,
so that more FP and FN cases can be analysed. For the same reason, no special
class imbalance mechanism is introduced in any algorithm. The performance of
the classifiers is presented in terms of f-measure (F1, harmonic mean between
precision and recall), false positive rate (FPR) and false negative rate (FNR).
For clustering, the silhouette coefficient (SC) is calculated.

The package fairlearn [3] provides implementations of both in-processing and
post-processing bias mitigation methods. More specifically, the Exponentiated
Gradient method is a in-processing method that trains several classifiers using
incremental values of a fairness metric as a constraint. The Threshold Optimiser
post-processing method applies different thresholds to the predictions returned
by a base estimator, so that a fairness metric is optimised. For both methods, the
default parameters are considered, with the exception of eps in Exponentiated
Gradient method which is set to 1/sqrt(num instances). Preprocessing mitiga-
tion methods are not applied in order to use the same dataset for all classifiers.
The equalised odds difference (EOD) is the selected metric to assess fairness for
all classifiers, as well as the metric internally used by the mitigation methods.
This metric returns the greater of the difference of the true positive rate and the
difference of the false positive rate by group.

As mentioned in Section 3.3, Break-down is the XAI method executed to
generate local explanations, using the implementation available on the Dalex
framework [2]. The five features that contribute most positively and the five
features that contribute most negatively to prediction will be studied. This way,
the analysis is focused on a small but relevant subset of features.

5 Results

This section presents and analysed the experimental results for RQ1 (Section 5.1)
and RQ2 (Section 5.2).

5.1 RQ1: Analysis of misclassification

Table 2 shows the performance and fairness of the classifiers using the training
strategies enumerated in Section 3.1. Tables 3 and 4 summarise the clustering
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results for FP and FN instances, respectively. In these tables, the columns rep-
resent the number of FP/FN, the number of clusters (CL) and the clustering
quality in terms of SC for each gender and classifier. As each dataset is different
in terms of privileged/unprivileged groups, the analysis is performed per dataset.
Overall conclusions are discussed at the end.

Table 2: Performance and fairness metrics of the classifiers.

Dataset
Training Random Forest Gradient Boosting Tree
strategy F1 FPR FNR EOD F1 FPR FNR EOD

ADU

CLfull 0.666 0.078 0.378 0.083 0.672 0.057 0.108 0.108
CLnogen 0.663 0.079 0.055 0.079 0.671 0.050 0.415 0.110
CLfem 0.604 0.025 0.478 - 0.640 0.018 0.461 -
CLmal 0.673 0.117 0.358 - 0.673 0.117 0.358 -
CLmit−in 0.666 0.078 0.378 0.083 0.655 0.049 0.424 0.031
CLmit−post 0.675 0.104 0.323 0.100 0.658 0.219 0.168 0.021

CEN

CLfull 0.834 0.191 0.160 0.226 0.846 0.178 0.149 0.249
CLnogen 0.824 0.242 0.145 0.044 0.838 0.267 0.103 0.084
CLfem 0.902 0.259 0.075 - 0.909 0.244 0.067 -
CLmal 0.705 0.159 0.311 - 0.705 0.159 0.311 -
CLmit−in 0.666 0.233 0.141 0.104 0.665 0.287 0.079 0.045
CLmit−post 0.811 0.238 0.174 0.045 0.820 0.247 0.151 0.004

EMP

CLfull 0.398 0.006 0.737 0.010 0.483 0.001 0.677 0.002
CLnogen 0.416 0.008 0.717 0.004 0.484 0.001 0.676 0.007
CLfem 0.405 0.004 0.735 - 0.442 0.001 0.712 -
CLmal 0.399 0.004 0.739 - 0.399 0.004 0.739 -
CLmit−in 0.403 0.006 0.732 0.001 0.483 0.001 0.677 0.002
CLmit−post 0.447 0.023 0.644 0.006 0.404 0.133 0.397 0.006

Adult. The use of mitigation methods with GBT clearly improves the fairness
of the models. It is also interesting that the exclusion of the gender attribute
does not profoundly influence either performance or fairness. However, training
a model only with female data implies a decrease in performance, while training
only with male data provides similar results to the other training strategies.
A larger imbalance between FPR and FNR is observed for the female group,
as the percentage of high-income females (the target variable) is lower than
the percentage of high-income males. Therefore, the lower performance can be
attributed to a more imbalanced class distribution in the female group.

Looking at the distribution of FP by gender (Table 3), this type of error
is more frequent for males than for females. The use of the post-processing
mitigation method comes at the cost of a higher number of FP for both genders,
especially when GBT is used. This increase is also reflected in a greater difficulty
in grouping misclassified instances with clustering: the number of clusters exceeds
100 and the silhouette coefficient can drop below 0.2. This phenomenon is also
observed for classifiers trained only on male data and, to a lesser extent, for
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those using complete data or no gender information. More cohesive clusters
are found for female data when gender information is omitted or when only
female instances are used for training. This might suggest that misclassification
responds to similar causes for female instances, while the greater diversity of
male instances makes it more difficult to identify clusters among them.

The FN results (Table 4) are similar in terms of the distribution of classi-
fication errors between male and female instances. However, it is also difficult
to identify a small number of clusters for the RF results, whereas for GBT
the results are fairly stable regardless of the training strategy. In addition, the
mitigation methods have reversed their tendency to misclassify instances. The
in-processing method has significantly increased the number of FN compared to
the post-processing method, especially for male instances when using GBT.

Table 3: Clustering of FP instances by gender.

Dataset
Training RF (female) RF (male) GBT (female) GBT (male)
strategy FP CL SC FP CL SC FP CL SC FP CL SC

ADU

CLfull 115 16 0.423 749 92 0.393 69 7 0.578 498 215 0.232
CLnogen 138 9 0.555 755 284 0.232 70 9 0.565 489 150 0.292
CLfem 109 7 0.581 - - - 77 6 0.605 - - -
CLmal - - - 797 507 0.158 - - - 797 272 0.242
CLmit−in 115 16 0.423 749 92 0.393 139 9 0.508 412 192 0.227
CLmit−post 184 79 0.309 972 208 0.255 956 678 0.123 1482 1125 0.106

CEN

CLfull 766 80 0.111 881 253 0.075 750 44 0.146 788 40 0.176
CLnogen 631 41 0.142 1459 159 0.087 627 23 0.209 1675 185 0.159
CLfem 769 27 0.193 - - - 725 27 0.191 - - -
CLmal - - - 899 45 0.176 - - - 899 69 0.116
CLmit−in 692 71 0.091 1317 397 0.080 772 58 0.163 1707 122 0.152
CLmit−post 725 65 0.135 1332 476 0.129 729 22 0.191 1403 339 0.181

EMP

CLfull 18 4 0.467 54 7 0.275 3 2 0.522 12 3 0.470
CLnogen 29 5 0.403 68 7 0.266 2 2 - 13 3 0.535
CLfem 17 4 0.546 - - - 5 3 0.408 - - -
CLmal - - - 39 5 0.327 - - - 39 3 0.468
CLmit−in 21 5 0.367 52 7 0.522 3 2 0.522 12 3 0.470
CLmit−post 72 6 0.307 217 12 0.251 483 23 0.217 1207 37 0.183

Dutch census. Clearer differences in the performance of the algorithms are
observed (Table 2). Training gender-specific models is more beneficial for females
than for males, whether training a RF or a GBT model. For females, the FNR is
significantly reduced, while for males the FNR is higher than the FPR. In terms
of mitigation methods, post-processing ensures a better balance between EOD
and F1, although not taking gender information into account (CLnogen) yields
similar results when using RF as a classifier.

The clustering of FP (Table 3) and FN (Table 4) provides further insights.
Both types of misclassification are more gender-balanced in this dataset than
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in the previous one, but FP are still more frequent among male instances. FN
are more reduced for males, as they represent the unprivileged group. Finding a
reduced number of clusters becomes a difficult task for AP, returning less than 10
clusters in a reduced number of cases. It seems that a large variety of instances
for both genders appear in this dataset, making it difficult to identify prototype
instances that could be used to explain gender differences.

Table 4: Clustering of FN instances by gender.

Dataset
Training RF (female) RF (male) GBT (female) GBT (male)
strategy FN CL SC FN CL SC FN CL SC FN CL SC

ADU

CLfull 227 89 0.315 1097 724 0.129 259 8 0.580 1188 520 0.188
CLnogen 218 73 0.332 1107 693 0.116 261 8 0.584 1193 836 0.101
CLfem 254 100 0.317 - - - 245 8 0.585 - - -
CLmal - - - 1064 902 0.074 - - - 1064 956 0.057
CLmit−in 227 89 0.315 1097 724 0.129 204 10 0.496 1283 705 0.154
CLmit−post 190 37 0.340 941 681 0.098 77 9 0.575 512 317 0.205

CEN

CLfull 504 23 0.156 1020 283 0.016 381 17 0.239 1031 48 0.161
CLnogen 808 39 0.131 572 12 0.319 587 21 0.161 395 9 0.417
CLfem 456 21 0.198 - - - 412 16 0.212 - - -
CLmal - - - 1052 51 0.151 - - - 1052 136 0.086
CLmit−in 644 27 0.197 691 23 0.177 394 35 0.157 360 15 0.267
CLmit−post 978 28 0.156 676 53 0.193 924 165 0.175 511 43 0.087

EMP

CLfull 310 19 0.248 590 24 0.237 282 18 0.238 545 25 0.224
CLnogen 300 18 0.239 575 26 0.221 284 18 0.236 542 26 0.228
CLfem 289 20 0.248 - - - 280 19 0.246 - - -
CLmal - - - 612 27 0.227 - - - 612 23 0.206
CLmit−in 305 19 0.231 589 24 0.235 282 18 0.238 545 25 0.224
CLmit−post 270 17 0.255 516 23 0.228 164 13 0.236 321 17 0.230

Employee promotion. The high ratio of FNR compared to FPR for all training
strategies indicates that the class imbalance problem affects both genders simi-
larly. Apparently, classifiers trained on the full data are quite fair compared to
the other datasets, and classifiers that omit gender information confirm that gen-
der is not among the most relevant attributes. Both mitigation methods seem to
achieve equivalent results for both RF and GBT, with the in-processing method
providing slightly better results for the trade-off between F1 and fairness.

The number of FP (Table 3) is small for all classifiers and training strategies,
with the exception of the combination of GBT and the post-processing mitigation
method. As seen in Table 2, this combination has the smallest difference between
FPR and FNR, resulting in an increase in FP especially for males. For the rest
of the training strategies, AP was able to find a cohesive clustering. Better SC
values are obtained for females, but this seems to be a consequence of the lower
number of FP. There is even one case (CLnogen with GBT) for which clustering
is not possible, as there are only two FP instances in the female group. The
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results are more similar between genders for the FN instances (Table 4), where
the number of clusters varies between 17 and 27. In contrast to other datasets,
the training strategy has less impact on the FN and how they can be clustered.

Answer to RQ1. Different training strategies have shown that classifiers can
behave differently depending on how gender information is integrated into the
learning process. Building gender-specific classifiers does not always guarantee
fewer classification errors for the unprivileged group, as data imbalance still has a
strong impact. According to the results, post-processing bias mitigation outper-
forms in-processing bias mitigation, but simply removing the gender attribute
might even work better in some cases. The clustering of FP and FN instances
with the AP algorithm has provided good results when the number of misclassi-
fied instances is less than 200. Some instability is observed when more instances
need to be clustered: a similar number of misclassified instances results in a very
different number of clusters, or many clusters only consist of 1 or 2 instances.

5.2 RQ2: Analysis of local explanations

Figures 1 (ADU), 2 (CEN) and 3 (EMP) show how many times (in percentage)
each feature appears in the top-5 features with the highest contribution in the
local explanations of the prototypes. Theoretically, each feature could appear
with a maximum of 20%. While this is true for numerical attributes, the contri-
bution of categorical attributes can be greater. In such a case, the contribution
is computed as the total count of all binary attributes in which the original at-
tribute was transformed for training. For FP instances, features with high posi-
tive contribution are considered, while for FN instances, those with high negative
contribution are extracted. Due to space limitations, only the heatmaps for the
GBT algorithm are included. Note that CLmit−post is omitted, as Break-down
would use the prediction of the base estimator to generate the explanations.

Adult. Overall, we observe little variation in the relevant features for females
and males in terms of FP predictions. A wider distribution of contributions for
FN instances is observed for both genders, probably due to the larger number of
prototypes obtained by clustering. The sex attribute was not the major contrib-
utor to FP predictions, but it did have some effect on FN predictions. Without
mitigation, sex can be attributed as relevant (11% of occurrence) for erroneously
predicting females as negative. When mitigation is applied, that error is shifted
to males (19%). Further gender differences are observed in the FN heatmap.
Females are classified as negative more often due to their marital status, while
professional occupation has more impact on the decision for males.

Dutch census. The gender attribute is an important cause of misclassification
in CLfull for females (FP) and males (FN). This confirms that males are the un-
privileged group in this dataset. Although the application of in-processing bias
mitigation might have reduced the influence of the sex attribute in the global
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(a) FP instances (female) (b) FP instances (male)

(c) FN instances (female) (d) FN instances (male)

Fig. 1: Percentage of feature appearance in the explanations (ADU).

model, this attribute remains a reason for misclassification for several proto-
types. All other attributes appear with similar occurrences in the explanations
of the FN prototypes regardless of gender. However, the heatmap of FN pro-
totypes shows a stronger influence of marital status for males when comparing
the gender-specific models (CLfem and CLmale). The explanations of the FN
prototypes of the CLnogen strategy also differ by gender. For males, feature con-
tributions only focus on three attributes (age, current activity and educational
level). For females, current activity and education level are also relevant, but
other characteristics such as country and economic status also appear.

Employee promotion. The gender attribute does not appear among the major
contributors to misclassification, irrespective of the nature of the error (FP/FN)
or gender. Males and females share FP errors due to occupational aspects such
as average training score, length of service and previous rating. However, FP
predictions among females are more influenced by the department in which they
work, especially when information on gender is omitted (CLfem). This fact is
even more evident for FN predictions in both genders, regardless of the training
strategy applied. Exploration of the dataset reveals that the promotion rate
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(a) FP instances (female) (b) FP instances (male)

(c) FN instances (female) (d) FN instances (male)

Fig. 2: Percentage of feature appearance in the explanations (CEN).

by gender can vary greatly depending on the employee’s department. A similar
situation occurs with the region attribute. Therefore, the prototype explanations
have uncovered a gender bias not directly attributed to the sensitive feature.

Answer to RQ2. Local explanations confirm the gender bias quantified by
fairness metrics. They also help to understand whether misclassification responds
to different attributes within privileged and unprivileged groups. In addition,
local explanations are useful for detecting additional bias patterns that escape
the sensitive attribute protection adopted by mitigation methods.

6 Concluding remarks

Many ML systems are being enhanced with mitigation methods to reduce the
presence of bias in the data or in the learning process. This paper has explored
how to apply clustering and XAI techniques to analyse gender bias in the predic-
tion errors made by binary classifiers. Clustering has been used to group misclas-
sified instances, identifying prototypes of errors with similar feature values. Local
explanation of such prototypes has allowed inspection of which specific features
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(a) FP instances (female) (b) FP instances (male)

(c) FN instances (female) (d) FN instances (male)

Fig. 3: Percentage of feature appearance in the explanations (EMP).

the misclassification can be attributed to. Although gender is often considered
the sensitive attribute in Fair ML, other attributes may also reveal gender bias.
In such cases, the barrier between privileged and unprivileged groups is blurred,
as both genders could be misclassified for similar reasons.

The proposed approach is very abstract and modular, and the application of
other clustering algorithms and local explanation methods could be considered.
Similarly, it could be adapted to cope with other types of data (e.g. text and
images). Future work will delve into the intersection of gender bias and coun-
terfactual fairness. Once the prototypes have been identified and explained, a
natural step is to explore whether counterfactuals recommend gender-specific
changes. Counterfactuals have recently been used to quantify how difficult it
would be to achieve fairness by focusing on one sensitive attribute [11]. It would
also be interesting to analyse whether such approaches can cope with gender
biases not directly exposed by the gender attribute. Similarly, new mitigation
methods might be needed to detect and correct more subtle gender biases.
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