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Abstract

It has become standard to explain neural network latent spaces with attrac-
tion/repulsion dimensionality reduction (ARDR) methods like tSNE and UMAP.
This relies on the premise that structure in the 2D representation is consistent
with the structure in the model’s latent space. However, this is an unproven
assumption – we are unaware of any convergence guarantees for ARDR algo-
rithms. We work on closing this question by relating ARDR methods to classical
dimensionality reduction techniques. Specifically, we show that one can fully
recover a PCA embedding by applying attractions and repulsions onto a ran-
domly initialized dataset. We also show that, with a small change, Locally Linear
Embeddings (LLE) can reproduce ARDR embeddings. Finally, we formalize a
series of conjectures that, if true, would allow one to attribute structure in the
2D embedding back to the input distribution.
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1 Introduction

The modern machine learning engineer has no doubt used a neural network without
fully knowing what the model chose to prioritize in the data. Indeed, deep learn-
ing models are known to take shortcuts, focusing on spurious correlations rather
semantic-level features in the data. Thus, the field of Explainable AI (XAI) has risen
to prominence to help analyze machine learning models and align the user’s intuition
with the model’s feature extraction process.
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The first step towards interpreting what a network has learned is to inspect
the distributions in its feature space. Since deep learning embeddings are too high-
dimensional to interpret on their own, it is common to perform dimensionality
reduction (DR) to get the embedding vectors into 2D. To this end, tSNE [1] and
UMAP [2] have become the de-facto tool for visualizing learned representations due to
their attractive properties – they are unsupervised, fast to optimize and produce 2D
distributions with neatly separated clusters. In fact, it has become almost standard
to show that a feature extractor works as intended by plotting its embeddings with
tSNE or UMAP; a non-exhaustive list of examples can be found in [3–47]. While most
of these examples are in the unsupervised learning setting, we point out that tSNE
and UMAP are also used to augment understanding of supervised latent spaces.

However, despite tSNE and UMAP giving intepretable embeddings and being used
for network explainability, they themselves are not well understood. For example, [48]
showed that UMAP’s implementation does not optimize the intended loss function,
implying that the theoretical motivation may not hold in practice. Furthermore, it
has been a point of active research to investigate how the loss functions, gradient
descent strategies, and heuristic accelerations alter the structure of tSNE and UMAP
embeddings [49–53], with many works suggesting that the common wisdom surround-
ing tSNE and UMAP may not hold. Thus, it is unclear whether conclusions drawn
from the 2D embeddings can be carried over to the neural network’s learned represen-
tation. Essentially, the community is trying to solve an explainability problem with a
tool that has a well-studied explainability problem.

Luckily, modern methods like tSNE and UMAP exist in a landscape of otherwise
well-understood DR techniques. For example, it is known that Principal Compo-
nent Analysis (PCA) maximally preserves variance from the input distribution. Thus,
given a PCA embedding, one can confidently attribute structure back to the orig-
inal dataset [54]. Similar conclusions can be drawn for other classic DR techniques
such as Locally Linear Embeddings (LLE) [55, 56], ISOMAP [57], Laplacian Eigen-
maps [58], and Multi-Dimensional Scaling (MDS) [59], to name a few. Importantly,
their explainability is a direct consequence of the convergence guarantees of each algo-
rithm. Unfortunately, these do not provide the intuitive separation that deep learning
practitioners want and are therefore not as popular for visualizing latent spaces. Thus,
the field has been inadvertently partitioned: DR methods are either well-understood
or are useful for deep learning explainability, but not both.

1.1 Our Contributions

Our work aims to bridge the gap between these two types of methods. We start
by defining a framework for representing methods such as PCA and LLE in the
tSNE/UMAP setting. Specifically, we show that one can provably obtain PCA embed-
dings by performing attractions and repulsions between points and that this is robust
to fast low-rank approximations. Furthermore, minimizing the PCA and LLE objec-
tive functions with the UMAP kernel on the 2D embedding gives similar gradients as
those found in tSNE/UMAP. We verify this experimentally by showing that minimiz-
ing the LLE objective with this kernel gives comparable embeddings to tSNE/UMAP.
Thus, we show that classical methods are reproducible in the modern DR framework.
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Fig. 1: UMAP/tSNE (top/bottom) embeddings of the last conv. layer of VGG11 [60]
on MNIST mid-training. The columns represent different epochs of training. 3 columns
have ą90% accuracy while one has 72% accuracy. We purposefully omit which column
corresponds to the low-accuracy latent space.

This naturally leads us to ask whether the relationship goes the other way. Specif-
ically, we conjecture that the tSNE/UMAP gradient descent heuristics minimize the
LLE objective with two kernels. If this holds true, it would suggest that one does
not require gradient descent to find an embedding that is provably similar to those
obtained by tSNE/UMAP. In this sense, we hope to facilitate future work towards the
open question: “Which properties in the tSNE/UMAP embedding guarantee struc-
ture in the original dataset?” We identify that the crux of this question lies in the
poorly-studied dynamics imposed by the kernel added on the embedding and discuss
opportunities for future work therein.

2 Related Work

There has been a significant attempt in recent years to explain deep learning models’
learned representations. Some methods attempt to explain a model’s decision-making
using specific data examples, for instance through saliency maps [61–63] or counter-
factual explanations [64, 65]. Other approaches focus on visualizing some aspect of
the network itself, such as feature activations, convolution filters [63], and the feature
vectors by finding neighbors [66], or embedding them into 2D, as we will discuss below.

For the rest of the paper we will refer to the class of gradient-based dimensional-
ity reduction techniques that includes tSNE and UMAP as Attraction/Repulsion DR
(ARDR) methods. The common theme among these is that they define notions of sim-
ilarity in the input X and the embedding Y and minimize a loss function by attracting
points in Y that should be similar and repelling points that should be dissimilar. A
non-exhaustive list of methods includes tSNE [1, 67], UMAP [2], ForceAtlas2 [68],
LargeVis [69] and PacMAP [50]. Similar methods such as TriMAP [70] discuss this in
the context of triplets but we note that the underlying schema of gradient descent by
attractions and repulsions remains the same.
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Despite the popularity of ARDR methods, there has been a recent wave of liter-
ature that disputes the common wisdom surrounding them. We recommend [71] to
increase intuition regarding how tSNE’s hyperparameters affect one’s ability to relate
the structures in the input and 2D embedding. We note that UMAP has similar issues
to those raised for tSNE in [71]. For more rigorous analysis that dispels myths regard-
ing ARDR methods, [49] showed that UMAP’s seemingly stronger attractions are a
result of the sampling strategy rather than the topological properties of the algo-
rithms. This was followed by [48], which noted the surprising fact that UMAP does
not actually optimize its stated loss function due to the heuristics it employs during
gradient descent. Further analysis of ARDR loss functions can be found in [50, 51]. We
note that [52] found that one can replace the KL divergence in UMAP by the sum of
squared errors without impacting the embeddings in practice. Furthermore, the mani-
fold learning intuitions regarding ARDR methods were questioned in [53, 70, 72], where
it was shown that it is unclear whether tSNE and UMAP are preserving local/global
structure in the expected manner. Lastly, other works have sought to unify tSNE and
UMAP by verifying that they are effectively identical up to a hyperparameter [52] and
can both be reproduced within the contrastive learning framework [73].

We are less aware of literature comparing classical DR techniques to the modern
wave of gradient-based ones. [51] defines a framework to unify classical and modern
DR methods, but the generality of the approach makes it difficult to make direct
claims regarding the connection between methods like PCA and UMAP. Furthermore,
tSNE does not fit into their framework in a natural manner. Indeed, the reference
most similar to ours is [53], where the authors analyze the manifold-learning prop-
erties of popular DR approaches towards the goal of improved explainability. They
study how well various DR techniques preserve locality via a novel measure and show
that (1) tSNE/UMAP preserve locality better than most classical methods1, and (2)
that tSNE/UMAP distort the Euclidean relationships more strongly than other DR
methods. We share the authors’ surprise regarding the lack of literature on explain-
able DR methods since dimensionality reduction is a natural step towards gathering
intuition on learned representations.

We approach the question of explainability from the other direction. Whereas [53]
studies the experimental properties of embeddings obtained by modern and classical
methods, we instead relate their theoretical foundations. Specifically, Section 3 pro-
vides background on PCA, LLE, and ARDR methods, after which Sections 4 and 5
show how to interpret classical methods in terms of attractions and repulsions between
points. We conclude by motivating conjectures and open questions in 6.

3 Preliminaries

3.1 Principal Component Analysis (PCA)

Likely the most famous dimensionality reduction algorithm, PCA finds the orthogonal
basis in Rnˆd that maximally preserves the variance in the centered dataset [74]. Let
CX “ UXΣXVJ

X be the singular value decomposition (SVD) of the centered dataset,

1Although there are situations where PCA performs best.
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where C “ I ´ 1
nJ is the centering matrix with J the all-1 matrix. This gives us an

expression for the positive semidefinite (psd) Gram matrix CGXC “ CXXJC “

UXΣ2
XUJ

X . The principal components of CX are defined as UXΣX can therefore be
found via eigen-decomposition on CGXC.

This has a natural extension to kernel methods [75]. Suppose that the kernel func-
tion kxpxi, xjq “ xϕpxiq, ϕpxjqy corresponds to an inner product space. Then the kernel
matrix rKsij “ kpxi, xjq is a psd Gram matrix for the space defined by ϕ and admits
an equivalent procedure for finding principal components as traditional PCA.

3.2 Locally Linear Embedding (LLE)

Since PCA embeddings are obtained via linear projection operations, one can think of
them as preserving large distances in the dataset. On the other hand, LLE preserves
local neighborhoods by finding the Y that maximally recreates linear combinations of
nearest-neighbors in X. Assume that we have the k-nearest-neighbor graph on X and
let Ki “ tei1, ¨ ¨ ¨ eiku represent the indices of xi’s k nearest neighbors in X. LLE then
proceeds by finding the W P Rnˆn such that

ÿ

i

||xi ´
ÿ

jPKi

wijxj ||
2
2 “ ||X ´ WX||2F “ ||pI ´ WqX||2F

is minimized under the constraint
ř

jPKi
wij “ 1 for all i. That is, we find the weights

such that each point xi is represented as a linear combination of its neighbors. This
implies that the i-th row of W must be zero on the indices l where xl is not xi’s
nearest neighbor. It can be shown that such a W always exists and each row can be
found by solving an eigenproblem [55, 56].

Having found the W that represents local neighborhood relationships in X, step
2 of LLE then finds the Y P Rnˆd such that

ÿ

i

||yi ´
ÿ

jPKi

wijyij ||
2
2 “ ||Y ´ WY||2F

is minimized2, subject to the constraint that the columns of Y form an orthogonal
basis, i.e. 1

nY
JY “ I. The embedding Y is given by the eigenvectors of M “ pI ´

WqJpI ´ Wq that correspond to the smallest d positive eigenvalues (Derivation in
B.1).

LLE can again be combined with kernels on X and Y to perform more sophis-
ticated similarity calculations [56]. Let KX be defined as in Section 3.1 and let
kypyi, yjq “ xψpyiq, ψpyjqy be a psd kernel that defines a corresponding KY P Rnˆn

with rKY sij “ kypyi, yjq. Then we can define the objective function during the first
step as finding the W that minimizes Tr

`

pI ´ WqKXpI ´ WqJ
˘

such that
ř

j wij “ 1
for all i. Similarly, the second step under a kernel function KY seeks the Y such that
Tr

`

pI ´ WqKY pI ´ WqJ
˘

is minimized.

2Note that the W and Ki are the same as in the first step.
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3.3 Gradient Dimensionality Reduction Methods

We now switch gears from the directly solvable methods to the gradient-based ones
which have risen to prominence in the last decade. This includes algorithms such as
UMAP, tSNE, LargeVis, and PacMAP, just to name a few.

3.3.1 In theory

ARDR methods

Assume that we are given an input X P RnˆD, a randomly initialized embedding
Y P Rnˆd and two psd kernel functions kxpxi, xjq “ xϕpxiq, ϕpxjqy and kypyi, yjq “

xψpyiq, ψpyjqy. These then define psd matrices KX ,KY P Rnˆn, where each pi, jq-th
entry represents the set of per-point similarities in X and Y respectively. Given this
setup, the goal of gradient-based DR methods is to find the embedding Y such that
KY is maximally similar to KX with respect to some matrix-wise loss function.

For the remainder of this section, the reader can assume that kx is the exponential
RBF kernel and ky is the quadratic Cauchy kernel; these are the common choices across
ARDR methods. However, we note that the upcoming generalizations only require
that ky be a function of the squared Euclidean distance. We will write kyp||yi ´ yj ||

2
2q

when emphasizing this point.
Since the kernels are usually chosen such that kx and ky are necessarily in r0, 1s, the

matrices can be treated as probability distributions3. Thus, the question of how well
KY represents KX is traditionally quantified using the KL-divergence KLpKX ||KY q.
For example, tSNE and UMAP state the following loss functions4

LtSNEpX,Yq “

n
ÿ

i,j“1
i‰j

kxpxi, xjq log

ˆ

kxpxi, xjq

kypyi, yjq

˙

(1)

LUMAP pX,Yq “

n
ÿ

i,j“1
i‰j

kxpxi, xjq log

ˆ

kxpxi, xjq

kypyi, yjq

˙

` p1 ´ kxpxi, xjqq log

ˆ

1 ´ kxpxi, xjq

1 ´ kypyi, yjq

˙

.

(2)

By then evaluating the gradient with respect to yi, one finds that it can be written
as a set of attractive and repulsive terms

∇yi “ ´c
ÿ

j

pAij ´ Rijq ¨
d kyp||yi ´ yj ||

2
2q

d ||yi ´ yj ||22
¨ pyi ´ yjq

where Aij and Rij act as scalars on the vector pyi ´ yjq and the
d kyp||yi´yj ||

2
2q

d ||yi´yj ||22
scalar

comes as a result of the chain rule over ky. In this sense, we have that yi is attracted to
yj according to Aij and repelled according to Rij . Performing gradient descent then

3Either as a matrix of n2 Bernoulli random variables as in UMAP or, if the matrix sums to 1, as a single
probability distribution as in tSNE

4We ignore the iterands where i “ j because it is assumed that a point should have no effect on itself
within the embedding.
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means that we apply these attractions and repulsions across all n2 pairs of points,
where each force’s strength is a function of kx, ky, and the length of the vector yi´yj .

Generalization

This attraction/repulsion framework is not restricted to the gradient of the KL-
divergence, however. Indeed, the pyi ´ yjq vectors come directly from the fact that ky
is a function of the squared Euclidean distance. This is evidenced by the chain rule,
as any derivative of kyp||yi ´ yj ||

2
2q with respect to yi must depend on the derivative

of ||yi ´ yj ||
2
2. To this end, we see

||yi ´ yj ||
2
2 “ yJ

i yi ´ 2yJ
i yj ` yJ

j yj

ùñ
B ||yi ´ yj ||

2
2

B yi
“ 2pyi ´ yjq,

implying that the gradient of kyp||yi ´ yj ||
2
2q will necessarily be some scalar acting on

pyi ´ yjq. Furthermore, any loss function of the following form will incur gradients
with attractions and/or repulsions between points.

LF pX,Yq “

n
ÿ

i,j“1
i‰j

F pkxpxi, xjq, kypyi, yjqq (3)

where F is any function that grows as kxpxi, xjq and kypyi, yjq diverge. The most
natural such objective function is the Frobenius norm

LFrobpX,Yq “ ||KX ´ KY ||2F “

n
ÿ

i,j“1
i‰j

pkxpxi, xjq ´ kypyi, yjqq2.

and it was shown in [52] that substituting this for UMAP’s KL-divergence objective
produces effectively equivalent embeddings (discussed further in Section 5.1).

We will use the term attraction/repulsion framework (A/R framework) to refer to
an analysis that uses attractions and repulsions. We will refer to the task of finding
an optimal such rank-d embedding as the A/R objective. That is, minY LF pX,Yq.

3.3.2 In practice

Many gradient-based DR methods develop the above framework before delving into
heuristics that approximate the solution. For example, a common trick is to notice
that an exponential kernel for kx is likely to be 0 for distant points. Since Aij linearly
depends on kxpxi, xjq in most ARDR methods, the attractions are therefore weak if
xi and xj are far away. To this end, the common heuristic is to compute a k-NN graph
over X and only calculate attractions along pairs of nearest neighbors. Furthermore,
it has been shown that computing a subset of the repulsions acting on a point is
equivalent in expectation to computing all of the repulsions.
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Thus, the usual optimization strategy is to simulate gradient descent by iterating
between the relevant attractions and sampled repulsions acting on each point. Specif-
ically, one attracts yi to the points corresponding to xi’s k nearest neighbors in X.
Then one finds ck random points from which to repel yi, where c is some appropriately
chosen constant.

3.4 Next Steps

Our goal for this paper is to use the explainability inherent in PCA and LLE to present
concrete interpretability for ARDR methods as a whole. To do this, we first show
that methods like PCA and LLE are easily framed in terms of the A/R framework –
their objective functions can be minimized by performing attractions and repulsions
on points in a randomly initialized embedding. Furthermore, their gradients under a
nonlinear ky strongly resemble those in UMAP and other gradient-based methods.

4 PCA in the ARDR Framework

Representing a learning problem in the ARDR framework requires two things. First,
we must find the kx, ky and F such that the objective can be written in the form
of Equation 3. Second, we must show that the minimum of the A/R formulation is
indeed the optimum of the original problem. We show this for PCA as it is the most
natural DR algorithm and therefore sets the stage for future steps.

4.1 PCA as Attractions and Repulsions

PCA is often presented as an SVD-based algorithm to find the optimal low-rank
representation of CX. By the Eckart-Young-Mirsky theorem, the optimal low-rank
representation with respect to the Frobenius norm is given by the X̃ s.t. ||CX´ X̃||F

is minimized subject to rankpX̃q ď d. It is well-known that, for centered X, this is
given by the first d principal components of CGXC “ CXXJC, which is exactly the
embedding Y obtained by PCA. With this as justification, we state PCA’s objective
function as

min
Y

||CpGX ´ GY qC||2F s.t. YJCY “ I

where GY “ YYJ. Note that the centering matrix C is symmetric and idempotent,
i.e. CJC “ C2 “ C. Under this setting, we have that kx and ky are both the standard
inner product and Fpa, bq “ pa´ bq2. We now show that this is minimized if and only
if Y is the PCA projection of X.
Lemma 1. The minimum of LPCApX,Yq “ ||CpGX ´ GY qC||2F is only obtained
when Y is the PCA projection of X up to orthogonal transformation.

The proof is given in section A.1 of the supplementary material. We now provide
the formula for the PCA gradient and verify that it can be represented as attractions
and repulsions between points.
Corollary 1. The PCA gradient ∇PCA P Rnˆd is given by

∇PCA “ ´2CpGX ´ GY qC : d pCGYCq “ ´4CpGX ´ GY qCY, (4)
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where the : operator implies the Frobenius inner product.
We derive this in Section A.2 of the supplementary material. Furthermore, the next

lemma states that this gradient can be written in terms of attractions and repulsions.
Lemma 2. Let L P Rnˆn be any matrix of the form L “ CAC for A P Rnˆn and let
α be a constant. Then any gradient of the form ∇ “ αL : d pCGYCq can be expressed
via attractions and repulsions on Y. Furthermore, the A/R-style gradient acting on
yi has the form ∇yi “ α

ř

j lijpyi ´ yjq.
The proof is given in Section A.3.

4.2 PCA Convergence

Given this gradient formulation, the remaining question is whether gradient descent
will converge to the PCA embedding. Our next result shows this to be the case.
Theorem 1. Let Y be any dataset in Rnˆd and let L “ ´4CpGX ´ GY qC for
dataset X P RnˆD. Then there always exists a γ and Y1 “ pI ` γLqY such that
LPCApX,Y1q ď LPCApX,Yq. Furthermore, continuously performing this gradient
update will necessarily converge to the PCA embedding of X.

The proof can be found in section A.4 of the supplementary material. Interestingly,
this proof only requires that GX be a real, symmetric matrix. So not only does it
trivially extend to Kernel PCA, it also holds for any real, symmetric similarity matrix,
such as those described in [76]. We are thus guaranteed to obtain a PCA embedding of
X if we randomly initialize the pointset Y and apply the gradient update in Equation
4. This naturally extends to PCA gradients in the A/R setting as well. Figure 2 shows
the convergence of PCA by gradient descent on the MNIST dataset.

Performing this gradient descent is impractical, however, as one must calculate
a new Rnˆn ˆ Rnˆd matrix product at every epoch. In many cases, however, our
similarity functions are psd and are therefore suitable for fast approximations. Given
psd matrix A and its SVD-based rank-k approximation Ak, there are sublinear-time
methods [77] for obtaining A1 such that

||A ´ A1||2F P p1 ˘ εq||A ´ Ak||2F (5)

Our next result shows that these approximations do not significantly affect the gradient
descent convergence. Let ∇ be the full PCA gradient and ∇1 be the gradient obtained
using the approximation in Eq. 5.
Lemma 3. Let λxi be the i-th eigenvalue of GX and let Gk

X be the optimal rank-k
approximation of GX . Then x∇,∇1yF ą 0 as long as

||GX ´ GY ||2F ě p1 ` εq
λx1

λxk

||GX ´ Gk
X ||2F

We prove this in Section A.5 of the supplementary material. This effectively means
that, as long as GY is a worse5 approximation to GX than Gk

X , the approximate
gradient points in a similar direction to the true one. Notice that once this is not the
case, then we have that ||GX ´ GY ||2F is an α-approximation of ||GX ´ Gk

X ||2F , with

5Up to scaling by ε and the eigengap
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(a) Epoch 0 (b) Epoch 100 (c) Epoch 500 (final) (d) Standard PCA

Fig. 2: PCA on 1000 MNIST samples by gradient descent. The final result is equivalent
to the standard PCA embedding up to orthogonal transformation, i.e. reflection on
x-axis.

α “ p1 ` ϵqpλx1
{λxk

q. We conjecture that this line of reasoning could lead to a fast
method for approximating PCA that does not require an eigendecomposition – one
simply initializes a Y and performs the necessary gradient updates in sublinear time.

5 AR Problems with Two Kernels

Using the blueprint developed in sections 3 and 4, we now show that ARDR methods
such as UMAP can be emulated using classical methods and gradient descent. The key
observation is simply that ARDR methods have a kernel on Y while classical methods
do not. Unfortunately, this kernel is also what introduces much of the difficulty when
analyzing convergence properties.

To see this, consider that the above theoretical results on PCA hold for the linear
kernel6 on Y but no longer hold as soon as ky is non-linear. This is due to the fact
that differentiating with respect to ky induces a new scalar by the chain rule. Indeed,
the AR problem LF pX,Yq will necessarily have gradients acting on yi of the form

∇yi “
ÿ

j

lij ¨
d kyp||yi ´ yj ||

2
2q

d ||yi ´ yj ||22
¨ pyi ´ yjq, (6)

where lij depends on kx, ky, and the chosen loss function F . We derive Equation 6
in the proof of Lemma 4. Observe that if ky is the centered linear kernel then the
derivative term is constant. Note, if F is the Frobenius norm, then lij “ rKX ´KY sij .

We relied on these observations heavily when proving the results in Section 4.
Specifically, for KY „GY , the optimal solution must have KX´KY of rank D´d while
Y has rank d. Thus, pKX´KY qY must be zero by orthogonality. However, a non-linear
ky impedes this line of reasoning. First, it is unclear what dynamics the non-constant
derivative term in Eq. 6 introduces. Second, the above orthogonality argument is
broken for non-linear ky – we could have that rankpKY q ą d even when rankpYq “ d.
Nonetheless, we will now verify that a non-linear ky introduces attraction-repulsion
characteristics like those in ARDR methods.

6To be precise, the kernel matrix is KY “ CpGY qC.
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5.1 PCA with Two Kernels

Recall the PCA objective function LPCApX,Yq “ ||CpGX´GY qC||2F . We now replace
the centered Gram matrices CGXC and CGYC by their kernel7 counterparts KX

and KY . Our loss function is then L2´Kernel
PCA pX,Yq “ ||KX ´ KY ||2F , leading to a

gradient of the form

∇yi “ ´
ÿ

j

pkxpxi, xjq ´ kypyi, yjqq ¨
d kyp||yi ´ yj ||

2
2q

d ||yi ´ yj ||22
¨ pyi ´ yjq (7)

It was shown in [52] that applying these gradients with the UMAP optimization
scheme provides embeddings that are indistinguishable from the standard UMAP
embeddings. However, we show in Figure 3 that this does not hold when optimizing
all Opn2q pairwise forces. This is in line with the observations made in [48] regarding
what loss UMAP is actually optimizing – applying some of the gradients in Eq. 7 gives
embeddings indistinguishable from UMAP but optimizing all n2 pairs of points does
not. Thus, reproducing ARDR embeddings in terms of classical techniques requires a
method that prioritizes local/global relationships similarly to tSNE and UMAP.

5.2 LLE with Two Kernels

LLE is therefore a natural choice: it finds the Y that preserves the local relationships
in X. We now present the gradients that optimize the LLE objective under two kernels.

For simplicity’s sake, we will assume8 that the constraint 1
nY

JY “ I applies in
kernel space. The closest suitable constraint is then 1

nKY “ I, as this implies that
ψpYq is an orthogonal basis and will also have covariance matrix I. Notice that the
diagonal of both KY and I is always 1, implying that the constraint requires the off-
diagonals of KY to be 0. Thus, we will approximate the solution to LLE with two
kernels9 by minimizing the loss LLLEpW,Yq “ TrpMKY q ` 1

n

ř

i,j kyp||yi´yj ||q
2
2, for

M “ pI ´ WqJpI ´ Wq.
Given this loss function, assume that we have the W that represents nearest

neighborhoods in X. We now want to use gradient descent to find the Y such that
LLLEpW,Yq is minimized. Our next lemma shows that this has a very natural
interpretation in the A/R framework.
Lemma 4. Let Y and M be defined as above, let V “ WJW, and let c be a constant.
Then the gradient of Tr pMKY q ` 1

n

ř

i,j kyp||yi ´ yj ||q
2
2 with respect to yi is given by

∇yi “ c
ÿ

j

ˆ

wij ` wji ´ vij ´
1

n

˙

d kyp||yi ´ yj ||
2
2q

d ||yi ´ yj ||22
pyi ´ yjq.

The proof can be found in Section B.2 of the supplementary material.

7Note that CAC is still a psd matrix for psd A; thus KX and KY can implicitly be double-centered.
8It is unclear to us if the constraint should apply in kernel space ψpYq or in the embedding space Y.
9We recognize that this is a simplistic view of the problem. Nonetheless, even this simple version proves

sufficient for emulating ARDR gradients.
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(a) PCA with kx, ky (b) tSNE (c) UMAP (d) LLE with kx, ky

Fig. 3: Left: Embedding by grad. descent of the PCA objective function with the
UMAP kx and ky functions. Middle: tSNE and UMAP embeddings. Right: Embedding
by grad. descent of the LLE objective function with the UMAP kx and ky functions.
The dataset is 5K randomly chosen points from the MNIST dataset. We observe
similar separation of the classes in LLE with two kernels vs. tSNE and UMAP.

We take a moment to consider the striking similarities between this and UMAP’s
gradients. First, note that for ky „ p1 ´ ||yi ´ yj ||

2
2q´1 as in UMAP, the derivative

with respect to the distance incurs a minus sign. Given this, the terms wij and wji
constitute our attraction scalars, i.e. the attraction between yi and yj depends linearly
on how much xj (resp. xi) contributes to xi’s (resp. xj ’s) local neighborhood under kx.
Indeed, this is precisely what the UMAP attraction scalars constitute. Furthermore,
in UMAP’s implementation10, when yi is attracted to yj , yj is also attracted to yi [52].

Now consider the repulsive terms in Lemma 4 given by vij`1{n “
“

WJW
‰

ij
`1{n.

Since W is an adjacency matrix with k entries in each row, the first term is equal to
the sum of the weights over all paths of length 2 from xi to xj . That is, vij imposes
repels yi from yj based on how densely connected xi and xj are. The second repulsion
scalar 1{n is simply an average repulsion from all points in Y. Now recall that UMAP’s
repulsion heuristic samples a constant number of points from Y for each yi. For distant
points, these repulsions are effectively 0, implying that UMAP’s practical repulsions
are, in expectation, somewhere between the vij and 1{n terms from Lemma 4.

We visualize this in similarity Figure 3, where we show the tSNE, UMAP and 2-
kernel PCA and LLE embeddings on 5K points from the MNIST training set. For
the 2-kernel implementations, we simply calculate the loss function the corresponding
loss function in Pytorch and run standard gradient descent on it. Importantly, we use
none of the heuristics that are present in the tSNE and UMAP algorithms [2, 52, 67].
The message is that the most vanilla implementation of LLE with UMAP’s kernels
adequately reproduces ARDR embeddings.

6 Conclusion and Future Work

Before discussing our conjectures and future work, we mention that they are directed at
our primary open question: “What information does an optimal ARDR-like embedding
give regarding its input?” In order to answer this, one must have a definition of
what it means to find an ‘optimal ARDR-like’ embedding. To that end, we point
out that there seems to be a fundamental divide between the modern and classical

10This is not theoretically motivated but seems to provide better convergence.
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DR methods and that quantifying how ‘similar’ two algorithms’ embeddings are is
a difficult task [52, 53]. Thus, in the absence of consensus on a metric that can do
this, we will discuss our conjectures using the theoretical metric f˚ that optimally
differentiates between classical and modern DR methods. Although it is infeasible to
find such a metric in practice, identifying a measure that adequately approximates f˚

should serve to make our conjectures falsifiable. We note that finding a metric that
resembles f˚ is a major open question and has been discussed in [49, 53, 70, 78].

6.1 Towards an Optimal Metric

Let Y1 and Y2 be two embeddings obtained from algorithms A1 and A2 on the same
input, i.e. A1pXq “ Y1 and A2pXq “ Y2. We now define the space of metrics11 M
that accept Y1 and Y2 and output a value in r0, 1s12. We now consider the optimal
metric f˚ P M as the one that maximally differentiates between classical DR methods
(PCA, LLE, ISOMAP, LE, MDS, etc.) and the modern ones (tSNE, UMAP, etc).
That is, in expectation over the set of all inputs X , f˚ gives maximal scores when
the embeddings come from the same class of DR methods and minimal scores when
they come from different classes of methods13. In some sense, f˚ is a measure for
the fundamental difference in embeddings between modern and classical DR methods.
Equipped with this definition, we now proceed to our conjectures regarding the essence
underlying tSNE and UMAP.

6.2 Conjectures

In Section 5, we showed that pairing the classical DR methods with a kernel on Y
gives gradients that have a very similar form to those in ARDR methods. Further-
more, we verified that minimizing the objective of LLE with UMAP’s kx, ky-kernels
gives similar embeddings as UMAP and tSNE. This implies that the primary differ-
ence between the classical and ARDR methods is the kernel on Y. Specifically, let f˚

be as defined in Section 6.1. Then,

Conjecture 1. Let ExPX
“

∇umap
yi

‰

be the expected gradient calculated during an

epoch of UMAP for a given embedding Y. Let ∇lle
yi be defined as in Lemma 4. Then

ExPX
“

x∇umap,∇lleyF
‰

ą 0, where x¨, ¨yF denotes the Frobenius inner product. Fur-
thermore, embeddings found by gradient descent on LLE with the UMAP kernels will,
under f˚, have high similarity to embeddings found by UMAP and low similarity to
those found by classical methods.

11We assume that these metrics have some standard properties. They should be (1) symmetric to the
inputs, i.e. fpY1,Y2q “ fpY2,Y1q; (2) invariant to the magnitude of the embeddings, i.e. fpY1,Y2q “

fpaY1, aY2q for a P R; (3) invariant to orientation, i.e. fpY1,Y2q “ fpOY1,OY2q for any orthonormal
transformation O.

12A score of 0 implies that Y1 is maximally dissimilar from Y2 and 1 means that Y1 “ Y2.
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E
xPX

Ac,A1
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mPAardr

“

fpAcpxq,A1
cpxqq ` fpAmpxq,A1

mpxqq ´ 2fpAcpxq,Ampxqq
‰

(8)
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That is, we claim that a gradient step for LLE with the UMAP kernels is, on aver-
age, going to act on the embedding similarly to UMAP and that the final embeddings
will have similar structure under f˚. This is a formalization of the statement ‘UMAP
approximates LLE with two kernels’.

Although the above conjecture describes how one could frame UMAP in terms
of the classical algorithms, it states nothing about convergence guarantees. Indeed,
we have seen that performing PCA in the ARDR framework with gradient descent
converges to the true PCA embedding. It remains to be seen if this holds in the
presence of non-linear ky kernels. However, if Conjecture 1 is true, then we believe
that there should exist a direct method similar to LLE that emulates tSNE/UMAP:

Conjecture 2. Let A be an ARDR algorithm that has high similarity to UMAP and
low similarity to classical methods under f˚ and let L be A’s effective loss function.
Let OPTx be the embedding with minimal cost for A on x P X under L. Then there
exists an algorithm A1 that returns A1pxq “ Y1

x without iterative optimizations such
that LpY1

xq P p1 ˘ εqLpOPTxq for all x P X .

By effective loss function, we mean the loss that is being optimized by the specific
heuristics and implementation of A; we refer to [48] for an example regarding UMAP.
This conjecture is a formalization of the statement ‘an algorithm similar to UMAP
can be performed without gradient descent and can provably approximate the global
minimum of UMAP’.

If we assume the above conjectures are true, we now propose that we can transfer
the explainability of PCA and LLE to the ARDR setting. That is, if one can get the
same quality embedding by solving for it directly, then one would understand how well
the embedding actually preserves the structure of the dataset. In a formal sense, we
believe that the major open question surrounding tSNE and UMAP is the following:

Question 1. Let A be an ARDR algorithm that is similar to tSNE/UMAP under
f˚ and let OPTApxq be the optimal embedding under A for input x. Now consider all
tx1, x2, ..., xnu P X such that OPTApx1q “ OPTApx2q “ ... “ OPTApxnq. Then what
characteristics must be consistent across all x P tx1, ..., xnu?

This is perhaps the most fundamental explainability question that one can ask:
“given the output of the explainability method, what can one say about the input?”

We note that our conjectures directly help to answer this question. First, our dis-
cussion on metrics describes what characteristics a ‘similar’ algorithm to tSNE/UMAP
must exhibit. Second, we believe that LLE with two kernels is precisely the ARDR
algorithm that is ‘similar’ to tSNE/UMAP. Lastly, we conjecture that such an ARDR
algorithm can be solved directly, i.e. without relying on attractions and repulsions.
This would allow one to formally state which inputs map to the same embedding and,
inevitably, what qualities must be consistent across all of these inputs.
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A PCA theoretical results

A.1 Proof of Theorem 1

Proof. The proof relies on a change of basis in the first d components of CX and
CY. Let CX “ UXΣXVJ

X and CY “ UYΣYV
J
Y be the SVD of CX and CY. Then

CGXC “ UXΣ2
XUJ

X and CGYC “ UYΣ
2
YU

J
Y .

We now decompose CX “ U`
XΣ`

XpV`
XqJ`U´

XΣ´
XpV´

XqJ, where the ` superscript
corresponds to the first d components of CX and the ´ superscript corresponds to
the final D´d components. Note that now U`

X is an orthogonal transformation in the
same subspace as UY . This allows us to define O “ UY pU`

XqJ as the change of basis
from CGXC to CGYC, providing the following characterization of LPCApX,Yq:

LPCApX,Y;Oq “ ||OCGXCOJ ´ CGYC||2F “ ||pUY ppΣ`
Xq2 ´ Σ2

Y qUJ
Y q ` fpXq||2F

(9)
where fpXq is independent of Y. The minimum of Equation 9 over Y occurs when
CY has the same singular values as OCX in the first d components, which is exactly
the PCA projection of X up to orthonormal transformation.

It remains to show that PCA is invariant to orthonormal transformations. Let
X1 “ OX. Then G1

X “ X1pX1qJ “ OGXOJ “ GX , since Gram matrices are unique
up to orthogonal transformations.

A.2 PCA gradient derivation

Let Y be any set of points in Rnˆd. Then the gradient with respect to Y of
LPCApX,Yq “ ||CGXC ´ CGYC||2F is obtained by

d LPCApX,Yq “ d ||CpGX ´ GY qC||2F

“ d
´

pCpGX ´ GY qCq
J

: pCpGX ´ GY qCq

¯

“ 2pCpGX ´ GY qCqJ : dpCpGX ´ GY qCq

“ ´2CpGX ´ GY qC : dGY

“ ´4CpGX ´ GY qCY : dY

d fPCApX,Yq

dY
“ ´4CpGX ´ GY qCY

where : represents the Frobenius inner product and the centering matrices cancel due
to idempotence.

A.3 Proof of Lemma 2

Proof. We use the well-known fact that CGYC “ ´ 1
2CDYC, for squared Euclidean

distance matrix DY , to express the gradient in terms of pyi ´ yjq vectors.

∇ “ αL : d

ˆ

´
1

2
CDYC

˙
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“ ´
α

2
L : dDY pC cancels by idempotenceq

ùñ ∇yi “ ´α
ÿ

j

rLsijpyi ´ yjq

A.4 Proof of Theorem 1

We start by confirming that the PCA embedding is a minimum of the gradient. Recall
that our gradient is of the form

∇Y “ 4CpGX ´ GY qCY.

If CY is the PCA embedding of CX, then CY’s d singular values should be CX’s top-d
singular values. Given this, CpGX´GY qC will only have singular values corresponding
to the remaining D ´ d diagonal positions. However, notice that Y’s singular values
are still in the first d coordinates. Since GX and GY have the same orthonormal basis,
we see that CpGX ´ GY qC is orthogonal to Y, giving us 0 gradient when Y is the
PCA embedding.

Next, we show that any minimum of the objective function must be a global min-
imum. This is a simple extension of the proof of lemma 1. Assume for the sake of
contradiction that Z is a global minimum of LPCA that is not equal to the PCA
embedding. Then Z ‰ OY for some orthonormal transformation O, implying that the
singular values of Z do not equal those of X in the first d components. Thus, there
is a Z1 in the ε-ball of Z that better approximates the singular values of X. Thus, Z
cannot be a minimum.

Given this, we now want to show that there always exists a learning rate value
such that a step of gradient descent will decrease our cost. Let Y1 “ pI ` γLqY
be the embedding after one step of gradient descent with learning rate γ and L “

CpGX ´ GY qC.

LPCApX,Y1q ă LPCApX,Yq Ñ ||CpGX ´ Y1Y1JqC||2F ă ||CpGX ´ GY qC||2F

||CpXXJ ´ Y1Y1JqC||2F “ ||C
´

GX ´ ppI ` γLqYq ppI ` γLqYq
J

¯

C||2F

“ ||CpGX ´ GY qC ´ γC
`

LGY ´ GY L
J ´ γLGY L

J
˘

C||2F

This expression subtracts γC
`

LGY ` GY L
J ` γLGY L

J
˘

C from our initial matrix
CpGX ´ GY qC. Thus, the overall Frobenius norm of the difference will be smaller
than that of CpGX ´ GY qC if the two matrices point in the same direction. Said
otherwise, we want to find a γ such that

0 ă xC
`

LGY ` GY L
J ` γLGY L

J
˘

C,CpGX ´ GY qCyF

23



Applying the properties of the trace as the Frobenius inner product, we get

Tr
”

`

CpLGY ` GY L
J ` γLGY L

JqC
˘J

CpGX ´ GY qC
ı

“

“ Tr
”

`

CpLGY ` GY L
J ` γLGY L

JqC
˘J

L
ı

“ Tr
“

2L2GY L ` γL2GY L
‰

“ Tr
“

2L2GY ` γL3GY

‰

“ Tr
“

2pCpGX ´ GY qCq2GY

‰

` γTr
“

pCpGX ´ GY qCq3GY

‰

(10)

where we cancelled the C matrices by idempotence with respect to the C’s in L.
Now notice that the first term is necessarily non-negative as it is the trace of a

positive semidefinite matrix. Furthermore, it will only be zero if GX “ GY or GY “ 0.
In both of these cases our gradient descent has completed, so we can assume the first
term to be strictly positive.

If GY ĺ GX , then the second is also positive semidefinite and non-negative. This
is intuitively clear, as GY ĺ GX implies that our problem is entirely convex. Indeed,
this means that as long as our learning rate isn’t so large that it ‘overshoots’ the
convex subspace, we are guaranteed to minimize our loss when GY ĺ GX . In the
alternative setting where GY ň GX , we simply need to choose a small enough γ such
that expression 10 remains positive. This concludes the proof.

A.5 Proof of Lemma 3

The proof relies on defining G1
X “ GX ` RX and G1

Y “ GY ` RY as the sum of the
original Gram matrices plus residual matrices R. Then

||RX ||2F “ p1 ` ϵq||GX ´ Gk
X ||2F “ p1 ` ϵq

n
ÿ

i“k`1

σ2
xi

where σxi is the i-th singular value of GX . Notice that since GK
Y “ GY for k ď d, we

have RY “ 0.
Plugging these in, we get

x∇,∇1yF “ Tr
“

CpGX ´GY qCY Y TCpG1
X ´G1

Y qC
‰

“ Tr rCpGX ´GY qCGY C rpGX ´GY q ´ pRX ´RY qsCs

“ Tr rpGX ´GY qCGY C rpGX ´GY q ´RX sCs

“ Tr rppGX ´GY qCGY CpGX ´GY qq ´ ppGX ´GY qCGY CRXqCs

“ Tr
“

pGX ´GY q2CGY C
‰

´ Tr rCpGX ´GY qCGY CRX s

where we perform rearrangements and cancel one of the C’s due to the trace being
invariant to cyclic permutations.
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Notice that the first term Tr
`

pGX ´GY q2CGY C
˘

must be positive as it is the
trace of a positive semi-definite matrix. It then suffices to show that

Tr
`

pGX ´GY q2CGY C
˘

ą |Tr pCpGX ´GY qCGY CRXq |

If this condition is satisfied, then we have that x∇,∇1yF ą 0, allowing us to employ
subgradient descent methods.

x∇,∇1y ě Tr
`

pGX ´GY q2CGY C
˘

´ |Tr pCpGX ´GY qGYRXq |

ě Tr
`

pGX ´GY q2CGY C
˘

´ c ¨ ||pGX ´GY qpCGY Cq1{2||F ¨ ||pCGY Cq1{2RX ||F

“ ||pGX ´GY qpCGY Cq1{2||2F ´ c||pGX ´GY qpCGY Cq1{2||F ¨ ||pCGY Cq1{2RX ||F

“ ||pGX ´GY qpCGY Cq1{2||F

´

||pCGY Cq1{2pGX ´GY q||F ´ c ¨ ||pCGY Cq1{2RX ||F

¯

where c “ ||C||2F .
Since the first term ||pGX ´GY qpCGY Cq1{2||F is necessarily positive, we have that

x∇,∇1yF ě 0 as long as ||pCGY Cq1{2pGX ´ GY q||F ´ c ¨ ||pCGY Cq1{2RX ||F ě 0 We
can also remove the c scalar, since we know that c ą 1. This gives us the necessary
condition

||pCGY Cq1{2pGX ´GY q||F ´ ||pCGY Cq1{2RX ||F ě 0 ùñ x∇,∇1yF ě 0 (11)

We can think of pCGY Cq1{2 as any dataset with the same principal components as
CY . So this necessary condition is effectively saying that the inner product between
CY and pGX ´GY q must be bigger than the inner product between CY and RX . This
intuitively makes sense. Consider that GX ´GY is the amount of error in our current
projection CY . Meanwhile, RX is an ϵ-approximation of GkX , the optimal low-rank
representation of GX . So our necessary condition states that as long as GY is not an
ϵ-approximation of GX , we can continue to use the sublinear-time approximation of
GX to approximate the gradient ∇.

Said otherwise, if GY is sufficiently different from GX , then x∇,∇1yF is positive. If
not, then we have that GY is approximates GkX , the optimal low-rank approximation
of GX . We formalize this below.

Let GY be such that ||GX ´GY ||2F ě p1`αq||GX ´GkX ||2F for α ą 0. Then we want
to solve for the α that makes equation 11 necessarily positive. This is equivalent to
finding the α that satisfies min ||pGX ´GY qpCGY Cq1{2||F “ max ||pCGXCq1{2RX ||F .
We then obtan a lower bound for the minimum:

||pGX ´GY qpCGY Cq1{2||F ě σmin

´

pCGY Cq1{2
¯

¨ ||GX ´GY ||F

ě σmin

´

pCGY Cq1{2
¯

¨

b

p1 ` αq||GX ´GkX ||2F
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and an upper bound for the maximum:

||pCGY Cq1{2RX ||F ď ||pCGY Cq1{2||2||RX ||F

ď ||pCGY Cq1{2||2 ¨

b

p1 ` ϵq||GX ´GkX ||2F

ď σmax

´

pCGY Cq1{2
¯

¨

b

p1 ` ϵq||GX ´GkX ||2F

Setting the lower bound equal to the upper bound and solving for α tells us that
equation 11 is greater than 0 when α satisfies

α ą
λy1
λyk

¨
p1 ` ϵq||GX ´GkX ||22

||GX ´GkX ||2F
´ 1

“ p1 ` ϵq
λy1
λyk

´ 1

This means that our gradient ∇1 will be in line with the true gradient ∇ as long
as GY satisfies the following condition:

||GX ´GY ||2F ě p1 ` ϵq
λy1
λyk

||GX ´GkX ||2F

As long as this is true, the gradient will push Y into the direction of the PCA embed-
ding of X in k dimensions. If we initialize our Y such that λy1 « λyk , then we know
they will slowly diverge over the course of gradient descent. Thus, we can upper bound
the ratio λy1{λyk ď λx1{λxk

. This gives us our final condition for convergence:

x∇,∇1yF will be greater than 0 as long as ||GX ´GY ||2F ě p1 ` ϵq
λx1

λxk

||GX ´GkX ||2F

(12)

B LLE Theoretical Results

B.1 LLE Derivation

If xi «
ř

k wikxik is the representation of xi by a linear combination of its nearest
neighbors, then we want to find the Y such that yi «

ř

k wikyik. Treating this as an
optimization problem, we can write

min ||Y ´ WY||2F s.t. YJY “ I.

By applying a Lagrangian to the constraint and taking the gradient, we have

min Tr
`

pI ´ WqGY pI ´ WqJ
˘

` Tr
`

ΛpI ´ YJYq
˘

ñ ∇Y “ 2MY ´ 2YJΛ
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set ∇Y to 0
ùñ MY “ YJΛ

where M “ pI ´ WqJpI ´ Wq. Since we are minimizing the objective, the embedding
Y is given by the eigenvectors of M “ pI ´ WqJpI ´ Wq that correspond to the
smallest d positive eigenvalues as these represent the smallest Lagrangians. Note that
pI ´ Wq is a graph Laplacian matrix and therefore M has at least 1 zero eigenvalue.

B.2 Proof of Lemma 4

Proof. We seek the gradient of

LLLEpYq “ TrpMKY q `
1

n
TrppI ´ KY q2q

We start with the first term. By differentiating the Frobenius inner product, we have

BTrpMKY q

BY
“ M :

BKY

BY
. (13)

Now consider that the pi, jq-th entry of KY is a function of ||yi ´ yj ||
2
2 and therefore

only depends on the pi, jq-th entry of DY . Thus,

BKY

BY
“

BKY

BDY
d

BDY

BY
,

where d is the Hadamard element-wise matrix product. We plug this into Eq. 13 and
rearrange terms to get

BTrpMKY q

BY
“

„

BKY

BDY
d M

ȷ

:
BDY

BY
.

We now use the intuition developed in Section 3.3.1 to point out that this corresponds
to the gradient acting on point yi as

∇yipTrpMKY qq “ c
ÿ

j

mij
d kyp||yi ´ yj ||

2
2q

d ||yi ´ yj ||22
pyi ´ yjq (14)

Now recall that M “ pI ´ WqJpI ´ Wq “ ´W ´ WJ ` I ` WJW. Thus, we can
write Eq. 14 as

∇yipTrpMKY qq “ c
ÿ

j

p´wij ´ wji ` 1i“j `
“

WJW
‰

ij
q
d kyp||yi ´ yj ||

2
2q

d ||yi ´ yj ||22
pyi ´ yjq,

where 1i“j is 1 if i “ j and 0 otherwise. However, notice that if yi “ yj implies that
yi ´ yj is 0. Thus, in the i “ j setting the gradient will be 0. Thus, we can cancel the
1 term from the sum, giving the desired result.
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It remains to show the gradient of the second term 1
n

ř

i,j kyp||yi ´ yj ||
2
2q. There,

it is a simple re-use of the above:

Bp 1
n

ř

i,j kyp||yi ´ yj ||
2
2qq

BY
“

1

n
sumi,j

Bpkyp||yi ´ yj ||
2
2qq

BY

ùñ ∇yi “ ´
1

n

ÿ

j

d kyp||yi ´ yj ||
2
2q

d ||yi ´ yj ||22
pyi ´ yjq

28


	Introduction
	Our Contributions

	Related Work
	Preliminaries
	Principal Component Analysis (PCA)
	Locally Linear Embedding (LLE)
	Gradient Dimensionality Reduction Methods
	In theory
	ARDR methods
	Generalization

	In practice

	Next Steps

	PCA in the ARDR Framework
	PCA as Attractions and Repulsions
	PCA Convergence

	AR Problems with Two Kernels
	PCA with Two Kernels
	LLE with Two Kernels

	Conclusion and Future Work
	Towards an Optimal Metric
	Conjectures

	PCA theoretical results
	Proof of Theorem 1
	PCA gradient derivation
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Lemma 3

	LLE Theoretical Results
	LLE Derivation
	Proof of Lemma 4


