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Abstract. Running while fatigued poses an increased risk of injury.
Wearable sensors allow the overall running kinematics or running pattern
to be captured as time series signals. The changes that happen in the
running pattern due to fatigue, although prominent enough to increase
the risk of injury, are generally only seen as subtle differences in the
signal itself and hence are difficult to differentiate using purely visual
inspection. In this paper, we introduce a time series dataset of motion
capture data from runners before and after a fatiguing intervention. The
total dataset consists of more than 5500 instances and was collected
from 19 participants. The evaluation presented in this paper first looks
at the effectiveness of a data aggregation technique called time series
barycenters which is shown to improve classification performance. We
evaluate and compare a set of classifiers and explanation methods for
this problem, and select the most informative classifier and explanation
for this dataset. We then present feedback from a domain expert on the
insights offered by the explanations.

Keywords: Time Series · Fatigue · Explanation · Time Series Barycen-
ters

1 Introduction

The onset of fatigue in runners can increase their risk of injury due to the
higher impact accelerations and alterations in the overall running kinematics [20].
The presence of fatigue can cause a lack of overall control over joint motion
and muscle contraction which causes this change in the running kinematics [3].
Furthermore, the changes seen in runners are often specific to the individual as
there is known to be no generalizable template of running technique and hence
feedback should be individualised to each runner [33].

Running kinematics for an individual can be captured using wearable sensors
such as the Shimmer1 sensors. The data captured from these sensors are time
series in nature. The majority of research in this exercise classification domain
uses extracted features from these time series as input into the models [23].

1 http://shimmersensing.com

http://shimmersensing.com
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This requires a level of understanding regarding which features may be more
important for a given classification task. However, many problems in the exer-
cise domain such as the task considered in this paper, where we predict fatigue
in runners, have subtle differences between classes which may not be noticeable
by the eye alone. Using time series classification techniques allows the signal to
be used directly as input into the classifier as raw signals. Additionally, this al-
lows interpretable classification techniques to be used to highlight the particular
regions of interest within a time series. This information is highly valuable as it
can inform the runner when they are changing their form and hence can help
prevent fatigue related injuries.

The data captured from the sensors can be noisy and due to the individu-
alised nature of the running pattern, automated segmentation procedures are
not always completely accurate. This can impact the classification performance
and the stability of the interpretations made. Hence, we employ a barycenter
averaging strategy [5] which aggregates and smoothes multiple strides together
which we expect will improve the classification performance and improve the
overall stability of the explanations.

The key contributions of this paper are as follows:

- We present the methods used to capture, segment, and classify motion cap-
ture data for a running fatigue prediction task. Furthermore, we release this
time series dataset for use by the machine learning community. To access
the data, see https://zenodo.org/record/7997851 [10].

- We evaluate the classification performance of various classifiers on this run-
ning fatigue prediction dataset using various models that are used for in-
terpretable time series classification. Furthermore, we evaluate the impact
on classifier performance when using a barycenter averaging technique as a
smoothing strategy on the wearable sensor data.

- We produce explanations for the time series data and discuss the insights into
the impact of fatigue in runners that can be deduced from these explanations.

In the next section we give an overview of some related work in the areas of
running and fatigue, time series classification, time series barycenters, and time
series explanation. Section 3 details the data collection and processing methods
used. In Section 4, we evaluate the classification performance of the datasets and
compare the performance of using individual strides vs the smoothed barycenter
strides. Section 5 presents an evaluation of a few explanation methods and some
insights gained in the data from the selected explanation method.

2 Related Work

2.1 Impact of Fatigue on Runners

Running has become a popular form of exercise over the past few decades and this
has led to an increase in the rate of running-related musculoskeletal injuries [36].

https://zenodo.org/record/7997851
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There are many factors that can cause these injuries and often they are due to
faults in the technique. Faults in a runners technique can start to happen or get
exaggerated as they get fatigued as they start to lose control over their running
form. This lack of control in the technique is known to be a primary contributor
to running related injuries [38]. Altering the kinematics while running is often an
attempt by the runner to minimise the overall metabolic cost due to fatigue [8].
Hence, it is important to identify when a runner’s form is beginning to change.
Being able to objectively measure these alterations is difficult and often runners
are required to rely on their own assessment of running form [4]. Wearable sensors
capture these kinematic changes hence allowing an objective analysis of running
form to be made.

2.2 Time Series Classification

A time series is a time based sequence of observations, xi(t); [i = 1, . . . ,m; t =
1, . . . , p], where xi(t) is the observation for the ith dimension at time point t.
The time series is univariate when m is 1 and multivariate when m is greater
than or equal to 2.

Time Series Classification (TSC) techniques are generally classed as distance
based, shapelet based, symbol based, deep learning methods and ensembles. Dis-
tance based techniques are known to perform well with the common benchmark
of 1-Nearest Neighbour (1-NN) with dynamic time warping (DTW) being one
of the most popular TSC approaches [1]. 1-NN DTW however has a high com-
putational complexity and sometimes faces challenges to the accuracy in the
presence of noise [29]. Time series shapelets are subsequences of the data which
capture the portion of the time series which is maximally representative of the
class. There have been various implementations of shapelets such as the original
work by Ye and Keogh [39], Shapelet Transform [15] and Learning Shapelets [7].
Shapelets, however are not widely used as they can be computationally expen-
sive [26].

Symbol based techniques include Mr-SEQL [13], WEASEL+MUSE [31] and
BOSS [28]. Symbol based techniques work by passing a sliding window over each
time series and representing each window with a word of symbols. This transform
is done using techniques such as Symbolic Aggregate Approximation (SAX) [14]
or Symbolic Fourier Transform (SFA) [30]. Although these methods are known to
work well, they often suffer a long runtime. Most recent ensemble methods work
by transforming the time series into a new feature space. From this idea, COTE
(Collective of Transformation based ensembles) was developed which works by
ensembling different classifiers over different time series representations [2] This
technique was later extended as HIVE-COTE (Hierarchical Vote system) which
uses a hierarchical structure based on probabilistic voting [16] HIVE-COTE has
been shown to achieve high accuracy, however has a large computational com-
plexity and hence is deemed impractical to run on large data mining problems.

Deep learning techniques such as ResNet and Fully Convolutional Networks
(FCN) have also been shown to perform well for time series classification. How-
ever, the most popular and current state-of-the art technique is ROCKET [6],
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which is a method that borrows ideas from deep neural networks where a sim-
ple linear classifier is trained on random convolutional kernels. This method has
been shown to achieve state-of-the-art performance whilst also maintaining a
lower computational load than other state-of-the-art techniques.

For the evaluations in this paper we have selected four techniques, Ridge
regression, Rocket, 1-NN-DTW, and Mr-SEQL as detailed in Section 4.

2.3 Time Series Barycenter

A time series barycenter is an average measure of a collection of time series.
Typically time series averaging strategies are classified as local or global. Local
strategies use pairwise averaging where a collection of series are iteratively av-
eraged into a single average series. Local averaging is dependent on the order in
which samples are aggregated and hence changing the order can give a different
result. Recent advances look at global average strategies which compute the aver-
age of the set of time series simultaneously. These averaging strategies generally
use a similarity metric to find the distance between the series. Dynamic Time
Warping (DTW) [27] is one of the most common similarity metrics used for time
series and hence is used in most time series barycenter calculation techniques.
DTW maps the time series in a non-linear way and works to find the optimal
alignment between the two series. Two popular global averaging strategies are
the DTW Barycenter Averaging (DBA) proposed by Petitjean et al. [24] and
the Soft-DTW Barycenter proposed by Cuturi et al. [5].

DTW Barycenter Averaging (DBA) computes the optimal average se-
quence within a group of series in DTW space by minimising the sum of the
squared DTW distance between the average sequence and the group of series [24].
To compute the DTW barycenter of a set of time series D is the optimisation
problem outlined in Equation 1.

min
µ

∑
x∈D

DTW (µ, x)2 (1)

Where x is a series belonging to the set D and µ is a candidate barycenter. The
DTW distance between each time series and a temporary average sequence (can-
didate barycenter) is calculated and the temporary average sequence is updated
until the optimisation criteria is met [32].

Soft-DTW Barycenter computes the average sequence within a group of series
by minimising the weighted sum of the Soft-DTW distance between the average
sequence and the group of series. Soft-DTW is an extension of the DBA method
where the min operator is replaced by the soft-min. This has the advantage of
being differentiable with respect to all of its inputs. Soft-DTW also has the ad-
vantage where it considers all possible alignments. Soft-min can be computed as



Explaining Fatigue in Runners from Wearable Sensor Data 5

shown by Equation 2 [35].

softminγ(a1, ..., an) = −γlog
∑
i

e−ai/γ (2)

γ controls the smoothing and hence as γ → 0, the result gets closer to that of
DTW [35].

Previous research has shown Soft-DTW barycenter averaging to be an effec-
tive way to aggregate time series data as it preserves the key features well [11]
and hence this technique will be employed in our evaluations.

2.4 Time Series Interpretation

Time Series data often comes from domains such as healthcare where having
explainable models is of importance. Many time series interpretation methods
are based on explaining through visualisation and feature importance rather than
instance based explanations [12]. Instance based techniques such as 1-NN DTW
although often used as a benchmark for time series classification may not be ideal
for explanation purposes. The nearest labelled neighbour can be found, however
it is not known which parts of the time series are more influential in a given
classification task [13]. Shapelet based techniques are by nature interpretable as
they pick up on the section of the time series that is maximally representative
of a class; however they are computationally inefficient. Deep learning methods,
although black box by nature, have methods which allow explanations to be
made based on the class weights. A popular method for interpretation of time
series is the use of Class Activation Maps (CAM) [40] which is a saliency method
that highlights discriminating parts of the time series (examples of this are shown
in Figure 4).

Many model-agnostic methods used outside the field of time series gener-
ate local explanations using a perturbation strategy where features are slightly
altered to gain insight into which features are more relevant to a model. For
this, mapping functions need to be defined to direct how the perturbations
should be done. LIME is one of the first techniques which uses this pertur-
bation strategy [25] which works for image, text, and tabular data. SHapeley
Additive exPlanations (SHAP) [17] is a current widely used technique which is
a unified measure of feature importance. TimeXplain is a recent development
which works with SHAP by defining mappings that work on the time and fre-
quency domain [21]. Hence, TimeXplain makes SHAP usable with time series
data.

3 Data Collection and Processing

3.1 Experimental Setup and Protocol

Nineteen recreational runners were recruited to participate in this study. The
participants were all free of lower limb injury and were regular runners (at least
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2 runs/week). The study protocol was reviewed and approved by the human
research ethics committee at the host institution.

A single lumbar mounted Shimmer Inertial Measurement Unit (IMU) was
mounted on each participant while they completed the task in three segments.
The tests were done on an outdoor track typically used for running. In the first
segment, the participant was asked to complete a 400m run at a comfortable
pace. In the second segment, the participant completed a beep test [19], which is a
multi-stage fitness test where the runner is required to run continuously between
two points 20m apart following an audio which produces ‘beeps’ which indicate
when the person should start running from one end. As the test progresses, the
interval between the ‘beeps’ reduces and hence the runner will be required to
increase their pace. The test ends when the runner is unable to continue or when
they are unable to keep up with the pace of the ‘beeps’. For this study, this was
used as the fatigue intervention. In the final stage, the participant was required
to repeat the 400m run, this time in their fatigued state. The fatigued run was
completed immediately after the completion of the beep test. The sensor was
capturing data during all three stages.

The IMU sensor captured acceleration, angular velocity and magnetometer
data. The data was collected as three long time series (non-fatigued run, beep
test, and fatigued run) and was then segmented into individual strides as de-
scribed in Section 3.2. The sampling rate of the sensors was set to 256Hz. Alto-
gether from the sensors, there were nine signals extracted: Acceleration (X,Y,Z),
Angular Velocity (X,Y,Z), and Magnetometer (X,Y,Z). From the acceleration
signals, the magnitude acceleration was derived (Amag =

√
X2 + Y 2 + Z2). This

signal was primarily used for the analysis presented in this paper. Our analysis
focuses on the two 400m runs which we frame as a binary classification task to
distinguish between Non-Fatigued and Fatigued.

Fig. 1: Breakdown of a single stride
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3.2 Segmentation and Pre-Processing strategy

Soft-DTW 
Barycenter

Y

X

Z

Data Capture using Shimmer Sensors Data Processing

Data Segmentation and Barycenter Calculation

Fig. 2: Data collection and processing protocol; Data was initially collected us-
ing Shimmer sensors, The signals were segmented into individual strides and
aggregated 5 strides at a time using a rolling Soft-DTW barycenter averaging
technique.

The data was segmented into individual strides using a segmentation proto-
col as follows. Each instance was a stride or two steps (See Figure 1). To segment
the data into individual strides, the acceleration in X-direction was first used to
identify the left foot so each stride begins with the left limb. The peak point
was identified and the minimum before the peak was used as the point for seg-
mentation. The breakdown of a single stride is shown in Figure 1 where the first
peak roughly corresponds to the left foot initial contact point. The segmented
strides were then resampled to the length of the median stride as the signals
are required to be of equal length for some of the interpretation strategies used
later in this paper. The segmentation and processing were done using Python
semi-automated scripts.
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Figure 2 summarises the procedure that was used for the data collection and
processing. Following data collection and segmentation, we use the barycenter
aggregation technique as a smoothing technique for the running data. We employ
a rolling barycenter calculation over every five strides. An example of the five
strides and its corresponding barycenter can be observed in Figure 2. To check
the effectiveness of using barycenters to represent the data, we evaluate the
classification performance of the barycenters against the full set of strides in the
next section (Section 4).

4 Classification Performance

The classification was performed at an individual participant level as previous
research has shown that personalised models perform much better than global
classifiers in this exercise domain due to variations between the biomechanics of
individuals [9, 37]. Hence, we have 19 separate datasets with approximately 290
strides or instances per dataset and as a result 19 stand-alone models that we
can evaluate. The task is posed as a binary classification task where we predict
fatigued strides against non-fatigued strides. The four time-series classification
models considered in the evaluation were selected for accuracy and interpretabil-
ity:

– Ridge regression (RidgeCV)2 is a linear classifier and is used as one of
the simplest models and takes the time series data as tabular data. Ridge
regression can work well on time series data where the values rather than
the shape of the data are of influence.

– Rocket is currently the state-of-the-art technique for time series classifica-
tion [6]. Rocket works though the generation of random convolutional kernels
which are then convolved along the time series to produce a feature map.
These features are then input into a simple linear classifier such as a Ridge
Classifier or Logistic Regression. In our evaluation, we use the default 10,000
kernels and a random state of 0.

– 1-Nearest Neighbour (1-NN) with Dynamic Time Warping (DTW)
has been used commonly as a benchmark classifier for time series. It is known
to be one of the more reliable and simple approaches for time series classifi-
cation [1].

– Mr-SEQL [13] is a linear classifier which uses symbolic features that are
extracted from the time series. Mr-SEQL is an interpretable model and has
been used by many for explainable AI in Time Series research. Hence, it has
been included in this evaluation.

Each dataset was split with the first two-thirds of each of the fatigued and
non-fatigued 400m runs being used as the training data and the last one-third
used as test data which was done to preserve the time series nature of the prob-
lem as instances next to each other are more likely to be similar to each other

2 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

RidgeCV.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html
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Fig. 3: Average accuracy using individual strides versus barycenters across the
19 subjects for the four selected models with errorbars showing the variation
between participants

and hence this technique reduces some bias. On average, across the participants,
there were 192 training instances and 98 test instances per participant. The
classification models were run on both the individual strides as well as the ag-
gregated barycenter signals. For the barycenter signals, the last four barycenters
in the train data were removed to prevent any training data being leaked into
the test data.

A summary of the results obtained are shown in Figure 3 with the full set of
results presented in the git repository 3. Overall the Rocket classifier performed
the best but all the classifiers were able to produce an average accuracy across
the subjects above 0.8. Using the barycenters instead of the individual strides
had slightly better performance suggesting that the barycenters could be a good
smoothing technique to use.

5 Explanation

To provide insights into the impact of fatigue on the runners, we present per-
sonalised explanations for selected participants. We aim to investigate if inter-
pretable time series techniques can successfully identify the more discriminative

3 https://github.com/bahavathyk/Running_Fatigue

https://github.com/bahavathyk/Running_Fatigue
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regions of the time series and if these regions can be explained in a real-world
context.

We select four participants and present a personalised explanation for each
participant. We assess a suitable explanation technique using a ranking method
as detailed in Section 5.1. The participants were selected on the basis of covering
a range of scenarios of how fatigue impacts runners. We select three participants
who show increased peak accelerations after fatigue which is a commonly seen
trend amongst many participants and one participant who does not show this
increase.

5.1 Strategy for selecting the explanation method

Explanation Methods. As we are interested in exploring the difference among
fatigued and non-fatigued runners using the raw time series signals, we select
local time-based explanation methods that specifically show the critical moments
(in time) that differentiate the two classes. This explanation is often presented
in the form of a saliency map, highlighting the discriminative areas of the data.
It is usually represented as a set of importance weights (from 0 to 100), one
weight for each point in the target time series. In this explanation assessment,
we evaluate 8 popular methods (Table 1). Of the selected methods, Gradient
SHAP [18] and Integrated Gradient [34] are commonly used in explaining deep
models for image classification, using the gradients of the trained models. SHAP
[17] and LIME [25] are model-agnostic, post-hoc explanation methods that can
be used to explain any classifiers. In our evaluation, MrSEQL-LIME, MrSEQL-
SHAP, ROCKET-LIME, and ROCKET-SHAP are results of LIME and SHAP
explanations for the MrSEQL [13] and ROCKET [6] classifiers. Intrinsic weights
from MrSEQL [13] (time-series specific classifier) and Ridge Regression classifier
(general classifier) are also added to the explanation methods to be evaluated.
A random explanation series (randomly generated importance weights) is used
as a sanity check to filter out any ineffective explanation methods.

Selection Strategy. We apply the explanation selection strategy presented
in [22] to evaluate the selected candidate explanation methods. This strategy
aims to estimate the impact of discriminative data areas (identified by an expla-
nation method) by perturbing the data in that area and measuring how a time
series classifier (referee classifier) responds to the perturbation. A good explana-
tion method that correctly identifies such discriminative areas will theoretically
trigger a more significant drop in accuracy of the referee classifier. This strategy
uses a committee of referee classifiers and a combination of different perturbation
strategies to reduce possible bias and enhance robustness in the evaluation.

In our assessment, the committee of Referee Classifiers includes ROCKET [6],
Mr-SEQL [13], 1NN-DTW [1] and Ridge Regression on datasets perturbed with
mean and Gaussian profile from either entire dataset or specific time point [21].

Results & Selected Explanation We present the results of our time series
explanation evaluation in Table 1. We note that by evaluating and ranking 8



Explaining Fatigue in Runners from Wearable Sensor Data 11

Rank for Participant ID Overall Rank

Explanation Method 07 08 17 18 Average Number
(1-9)

Gradient SHAP 6 3 6 7 5.50 5
Integrated Gradient 3 1 9 8 5.25 4
MrSEQL-LIME 5 5 5 3 4.50 3
ROCKET-LIME 9 6 3 4 5.50 5
MrSEQL-SHAP 1 2 1 1 1.25 1
ROCKET-SHAP 2 4 8 2 4.00 2
MrSEQL-SM 4 7 2 5 4.50 3
RidgeCV-SM 8 9 7 9 8.25 7
Random 7 8 4 6 6.25 6

Table 1: Explanation evaluation ranking results. MrSEQL-SHAP has the best
rank and is thus the most informative explanation method for this problem. The
rank of each explanation method is computed for each participant dataset, and
then averaged across participants.

explanation methods on the 4 participants we analyse in depth (with ids: 07,
08, 17, 18), the most informative explanation method for our data is MrSEQL-
SHAP.

5.2 Discussion and Feedback from the Explanations

The selected explanation technique, Mr-SEQL-SHAP was used to generate ex-
planations for the four selected participants and these were discussed with our
domain expert to gain insights into how fatigue affected these runners. Tim-
eXplain was used to apply Shap to the time series. The aggregated barycenter
strides were used for the evaluations due to improved classification performance.
Indeed the barycentres may also help to improve the clarity of the explanations.
Figure 4 shows saliency maps showing a Mr-SEQL-SHAP explanation for both
the individual strides and the aggregated barycenter strides for participant 8
and it can be seen that the barycenters aid in visualising the saliency and po-
tentially improving the stability of the predictions. A reason for this could be
that many of these interpretation techniques work well when the data is aligned
well. Although the process of segmentation makes the nature of the initial data
reasonably well aligned, the barycenter further aids in this overall alignment of
the time series.

Figure 5 on the left shows a mapping of all the fatigued and non-fatigued
strides against each other and a saliency map of a sample fatigued stride pro-
duced from Mr-SEQL-SHAP for each of the four participants. The red high-
lighted regions in the saliency map suggest that region contributed more towards
the classification decision.

The most common effect of fatigue was an increase in the peak accelera-
tion point which corresponds to the initial contact where the foot strikes the
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(a) (b)

Fig. 4: (a) Mr-SEQL-SHAP explanation on the individual strides (Fatigued
Class), (b) Mr-SEQL-SHAP explanation on the rolling barycenters calculated
from the individual strides (Fatigued class) for Participant 8.

ground. This suggests that most people lose control during the loading stage.
This supports previous research which suggests that the natural damping of run-
ners reduces with fatigue [38] which would affect the loading stage or the weight
absorption stage of running which is observed around the peaks in our data.

The insights from the highlighted regions (Figure 5) of each participant can
be summarised as follows:

Participant 8 and 18: This is the most straightforward case and perhaps
the most common in the dataset. These participants have a fairly symmetric
gait - the left and right peaks are similar. Perhaps there is a slightly higher peak
acceleration on their left (non-dominant) leg. However, there is a clear asymme-
try in the fatigued state and this is highlighted in dark red in the saliency maps.
For participant 8 the saliency map highlights the second peak but to a lesser
extent. So for both participants the feedback is that fatigue shows up particu-
larly in the non-dominant leg resulting in loss of control during the loading stage.

Participant 17: This participant is similar to 8 and 18 except that there is al-
ready evidence of asymmetry in the non-fatigued strides. The asymmetry shows
up as higher peak acceleration on the left leg. This asymmetry is accentuated
when fatigued. Both peaks are highlighted but the saliency map gives more
weight to the right leg in this case.

Participant 7: This is the most interesting participant in some respects. We
can see in Figure 5e that there is no difference in peak impact between the fa-
tigued and non-fatigued states. So there is no evidence of loss of control during
the loading stage. Nevertheless the classifiers are able to distinguish between the
two classes with very high accuracy. The saliency map in Figure 5f indicates that
the discriminative region is later in the stride; it is during the unloading phase
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(a) Participant 007 (b) Participant 7 - Mr-SEQL-SHAP

(c) Participant 008 (d) Participant 8 - Mr-SEQL-SHAP

(e) Participant 017 (f) Participant 17 - Mr-SEQL-SHAP

(g) Participant 018 (h) Participant 18 - Mr-SEQL-SHAP

Fig. 5: Left: A map of the fatigued versus not-fatigued instances for the selected
four participants. Right: Mr-SEQL-SHAP generated saliency maps for a single
sample of a fatigued stride
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where the leg is preparing to go into flight. This is interesting as although the
participant was able to maintain their impact acceleration which is known as an
indicator of fatigue, they are still modifying their overall running gait in a way
that is less obvious to an observer.

Overall the discriminatory regions that were identified by the Mr-SEQL-
SHAP technique supported the overlay plots in Figure 5 as the regions which
were clearly different in the overlay plots were highlighted in the explanations.
However, the saliency plots also provide more information as they were able to
highlight the particular limb that was contributing more to the classification
task. Furthermore, it should be noted that there were some minor discrepencies
in the segmentation due to the automated nature and this can be seen in the
bi-modal behaviour in participant 17 (Figure 5e) where there are two apparent
points that were interchangeably selected during segmentation. Despite this, the
models were easily able to classify accurately and select meaningful regions as
discriminatory. This adaptability is important due to the personalised nature of
running, where a one-fit-all solution is not feasible.

6 Conclusions and Future Work

In this paper, we present the protocol for collecting and processing a dataset of
wearable sensor data from runners in their normal and fatigued states. We then
evaluate the utility of using a barycenter averaging strategy as a smoothing and
aggregation strategy to improve overall classification and explanation. Finally,
we identify a suitable explanation technique and apply this to our data to gain
insights into how fatigue impacts runners.

The use of barycenters to aggregate the time series may help improve the
classification performance as well as improve the visual aspect of the explana-
tion. A variety of explanation techniques were also investigated and Mr-SEQL-
SHAP came out to be the most effective way to explain this particular dataset.
Combining the explanations generated from the Mr-SEQL-SHAP method with
domain specific knowledge, some insights into how fatigue impacts runners were
made. It was observed that many runners lost control during the loading stage,
which is around the peak impact point. However, this was not the case for ev-
ery participant and hence shows the importance of having personalised feedback
systems. These feedback systems could be very helpful to runners in providing
personalised feedback on the changes they are making to their overall running
kinematics.

The results showed that Mr-SEQL with SHAP was able to highlight domain
meaningful discriminative regions of the time series for the magnitude of accel-
eration data. However, the sensors have multivariate data, and looking at the
other signals may be useful in providing further insights into the data. Further-
more, there is limited research that looks at explanations for multivariate time
series data and hence an interesting avenue to investigate would be to extend
this work to a multivariate case.
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