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Abstract. To be employed in real-world applications, explainable arti-
ficial intelligence (XAI) techniques need to provide explanations that are
comprehensible to experts and decision-makers with no machine learning
(ML) background, thus allowing for the validation of the ML model via
their domain knowledge.
To this aim, XAI approaches based on feature importance and coun-
terfactuals can be employed, although both have some limitations: the
last provide only local explanations, whereas the first can be very com-
putationally expensive. A less computationally-expensive global feature
importance measure can be derived by considering the instances close
to the model decision boundary and analyzing how often some minor
changes in one feature’s values do affect the classification outcome.
However, the validation of XAI techniques in the literature rarely em-
ploys the application domain knowledge due to the burden of formalizing
it, e.g., providing some degree of expected importance for each feature.
Still, given an ML model, it is difficult to determine whether an XAI
technique may inject a bias in the explanation (e.g., overestimating or
underestimating the importance of a feature) in the absence of such
ground truth.
To address this issue, we test our feature importance approach both
with the UCI benchmark datasets and real-world smart manufacturing
data characterized by annotations provided by domain experts about
the expected importance of each feature. If compared to the state-of-
the-art, the employed approach results to be reliable and convenient in
terms of computation time, as well as more concordant with the expected
importance provided by the domain expert.
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1 Introduction and Motivations

Recent artificial intelligence (AI) approaches can provide unprecedented recog-
nition performances [8]. However, since AI approaches can work as a black box,
domain experts cannot easily validate and trust their outcomes [7]. This is es-
pecially important in real-world scenarios, such as in smart manufacturing [6].
Indeed, the adoption of AI technology can provide improved productivity [4] if
AI outcomes can be trusted enough to be integrated into decision-making pro-
cesses [21]. Explainable Artificial Intelligence (XAI) approaches [22] can address
this issue by providing some explanations for the AI outcomes [5]. Using XAI ap-
proaches for smart manufacturing applications can result in reduced production
costs, classification error mitigation, and improved AI-based system debugging
[3].

In this context, choosing the most suitable explanation form is an application-
dependent design choice. Depending on the application and its end-users, the
interpretability of the explanations may be prioritized over their faithfulness
[29]. According to [29] an explanation can be considered interpretable if (i) it
is not ambiguous, (ii) similar instances correspond to similar explanations, and
(iii) it can be presented in a compact form. Also, an explanation can be consid-
ered faithful if it (i) describes the AI model comprehensively and correctly, and
(ii) provides some degree of knowledge about the decision process embedded in
the AI model. Typically, interpretable explanations are not faithful, and vice
versa [29]. To be understandable by domain experts and decision-makers with
no AI background, the explanation needs to be as interpretable as possible. To
this aim, the explanation forms that can be employed are the attribution-based
(e.g., feature importance) and instance-based (e.g., based on counterfactuals)
[29]. Counterfactual explanations expose similarities and differences between an
instance classified by the AI model and similar instances from a different class
[16]. Feature importance measures evaluate the importance of parts of the input
(e.g. features for tabular data) for a given classification [2]. However, both these
approaches have their limitations. On one hand, counterfactual explanations can
only explain a single result rather than the whole model. On the other hand,
feature importance measures can be very computationally expensive. The short-
comings of feature importance e counterfactual-based XAI approaches can be
addressed by combining those approaches to provide novel, model-agnostic, and
robust XAI approaches [9].

A common challenge with newly proposed XAI methods is their validation.
Indeed, it is well known that the assumptions underlying the correctness of ex-
planations may not be verified in any real-world scenario. For example, in the
presence of correlation and codependence between features some not measures of
feature importance become unreliable [28]. In this case, it is not possible to know
whether the XAI method is overestimating or underestimating the importance
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of a feature, since it is typically very complex to have an a priori quantitative
assessment of the informativeness of a specific feature for a classification prob-
lem [12], e.g., through the domain knowledge [10]. To address this issue, some
approaches in the literature propose the synthetic generation of (i) datasets with
known relative feature importance [13], [40], or (ii) ground truth explanation via
transparent classifiers for which the reason for the decision taken is available by
design [18]. The problem with these approaches is that any synthetic generation
procedure could inject some bias in the generated data or explanations, thus
preventing a reliable and effective evaluation of the XAI method.

In this paper, this issue is addressed by employing a real-world dataset in
which the expected importance of each feature in the data is provided by domain
experts and used to validate a measure of feature importance that is model-
agnostic, global, and counterfactual-based. Moreover, this measure is compared
against other feature importance measures from the state of the art with a
number of benchmark datasets.

The paper is structured as follows. In Section 2 the background and related
works are presented. The employed approach is detailed in Section 3. The case
studies and the experimental setup are presented in Section 4. Section 5 discuss
the obtained results, whereas Section 6 outlines the conclusions.

2 Related Works

Post-hoc feature importance measures such as Permutation Importance [1] and
Shapley additive explanations (SHAP, [27]) are among the most widely used
post-hoc explanation tools. Those approaches assess the relevance of the in-
put features on the AI model’s classification outcome. Permutation Importance
measures the importance of each feature for a trained AI model by randomly
permuting the rows of one feature and evaluating the effect on the final classifi-
cation performance. This process breaks the relationship between a feature and
the target class and the resulting decrease in performance indicates the extent to
which the model relies on the permuted feature. Instead, the feature importance
provided via SHAP evaluates the importance of a feature for the classification
by measuring the average marginal contribution of that feature across all the
possible subsets of features [32]. Due to its wide applicability and solid theoreti-
cal background, the SHAP framework can be considered a gold standard among
the feature importance approaches [30]. At the same time, the extensive use of
SHAP has exposed its main limitations, among which, there is its computational
cost. Indeed, SHAP’s time complexity grows exponentially with the number of
features and linearly with the number of samples in the data [24]. This issue is
not specific to SHAP only. Indeed, most feature importance measures tend to
be computationally expensive [20].

In this regard, counterfactual explanations can result in reduced computa-
tional costs. Intuitively, given a data instance i and its predicted class, a coun-
terfactual is an instance c ’similar’ to i that has been recognized as a different
class. A counterfactual explanation corresponds to finding that ’similar’ instance
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and understanding the minimal change needed to change the classification out-
come. In the literature there is no agreement on the definition of such a ’minimal
change’, e.g. it can be the minimum number of features to change or the min-
imum distance between the original instance and the counterfactual instances
[19]. A counterfactual explanation can be found by (i) adopting a heuristic search
strategy, e.g., searching within a reference population of instances to be used as
counterfactuals [36].; (ii) framing the search as an optimization problem where
both loss and constraints are modified [31], [15]; (iii) or using a ”brute force
procedure”, i.e. specifying the step size and the ranges of values for each feature
to be explored around the instance being explained [35]. According to the results
in [19], the heuristic search strategies based on K-Nearest Neighbour procedures
can result in the smallest computational cost as compared to other ones [36].
Despite the chosen search strategy, the main limitation of counterfactual expla-
nations is that, by being local, they do not provide any insights about the AI
model reasoning as a whole [19], [34].

To overcome the shortcomings of both feature importance e counterfactual-
based XAI approaches, an increasing number of research works are proposing
novel strategies based on the combination of feature importance and counterfac-
tual explanations. For instance, in [39] the authors attempt to generate coun-
terfactuals by modifying the value of the most important features measured
via SHAP. An approach based on probabilistic contrasting counterfactuals is
proposed in [17] to generate global and local explanations. However, by being
causality-based this approach requires structured knowledge, i.e. causal graph,
and does not provide an actual feature importance measure. Authors in [38]
locally approximate the model’s decision boundary by using a variational au-
toencoder to generate counterfactuals in the neighborhood of an instance to be
explained. Similarly, authors in [33] provide local decision rules that are consis-
tent with the decision boundary, whereas in [25] the authors generate instances
in a hypersphere build around the sample to explain in order to approximate
the decision boundary, which is not feasible for datasets characterized by a great
number of features. The feature importance measure employed in this study,
i.e. BoCSoR, belongs to a novel thread in the XAI literature, in which different
explanation strategies are combined to address their limitations [23].

3 Design

We employ the Boundary Crossing Solo Ratio (BoCSoR), a global feature im-
portance measure obtained by aggregating local counterfactual explanations [9].
The main idea behind BoCSoR is assessing the importance of one feature by
considering the frequency with which the samples close to the model’s decision
boundary result in a different classification outcome if the value of that specific
feature is substituted with the one of the corresponding counterfactual sample.

To identify the samples close to the decision boundary, we consider the sam-
ples with the smaller inter-class distance, i.e. the Euclidean distance separating
an instance from its closest instance of the counterfactual class. Indeed, the
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Fig. 1. The approach to finding the ”closest” counterfactual (i.e., s− > a′′) from class
A to class B.

method ”select” at line 6 of Algorithm 1 picks the instances whose inter-class
distance falls below a specified percentile (percentileTh in Algorithm 1) among
all inter-class distances.

Given a sample close to the decision boundary (s in Fig. 1), a counterfactual
can be found by considering its K-Nearest-Neighbours of the counterfactual class
(a, b and c in Fig. 1). The closest instance of a different class, however, could
not correspond to the smallest change required to get a different classification.
Midpoints are created between each possible counterfactual and the original in-
stance in order to address this issue. Thus, via a step-wise exploration along
the segments between the query sample and the neighbors, the closest midpoint
corresponding to a different classification outcome can be considered as the clos-
est counterfactual for the sample s (Fig. 1). The above-reported operations are
provided via the method ”findCF” in Algorithm 1 at line 8, which provides
the closest counterfactual obtained via this step-wise exploration of the space
spanning the decision boundary in the proximity of one sample.

”Closest” here is intended as relative to the step-wise exploration of the space
between the two samples of different classes, rather than in an absolute sense as
the minimum distance to change the classification outcome. Although this choice
drops the guarantee of absolute minimal distance corresponding to the change
in the classification outcome, it results in much lower computational costs and is
therefore favored. This counterfactual search can be adjusted via two parameters:
k and steps (Algorithm 1). k is the considered number of K-Nearest-Neighbours
of the counterfactual class, steps is the number of midpoints (smaller circles
in Fig. 1) along the segments between the query sample and its neighbors of
the counterfactual class. We stress that the plausibility of the counterfactuals
generated via linear interpolation is beyond the scope of the present study. In
fact, the counterfactuals thus generated are not returned by our approach as
the final explanation term. Instead, these are considered minimal perturbations
that are relevant for the classification outcome, and thus useful for explaining
the internal logic of the algorithm in terms of the sensitivity of the decision
boundary to a change in a specific feature’s value [38].
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Given the closest counterfactual for one sample, it is possible to test which
features alone can result in the crossing of the AI model’s decision boundary,
i.e. in a different classification outcome. Thus, starting from the counterfactual,
we replace (one at a time) the feature values with those of the original sample
(method ”changeFeatureValue” in Algorithm 1, line 10). If this substitution
corresponds to the crossing of the decision boundary, that feature is considered
relevant (Algorithm 1 at line 11-13).

By taking into account all the samples close to the decision boundary, the
times in which a feature is considered relevant (provided via the method ”fre-
quenceByFeature” in Algorithm 1, line 16) can be used as a proxy to evaluate
the importance of each feature to distinguish the classes [38]. Finally, BoCSoR
evaluates the importance of one feature by considering the frequency with which
the changes of that feature alone do result in the crossing of the model’s decision
boundary, by considering the samples close to it. Algorithm 1 shows a high-level
pseudo-code of the above-described procedure.

Algorithm 1 Procedure to measure the feature importance (i.e., BoCSoR).

Requires:
M ⇐ trained machine learning model
I ⇐ set of all the data instances
F ⇐ set of all the features in the data
classo ⇐ original class
classc ⇐ counterfactual class
percentileTh ⇐ threshold of the data
k ⇐ # closest neighbours of s from classc
steps ⇐ # intermediate steps between s and its neighbours
Procedure:

1: relevantFeatures ⇐ emptyList()
2: setO ⇐ select(I, label == classo)
3: setC ⇐ select(I, label == classc)
4: pairwiseDist ⇐ computeDistance(setO, setC)
5: th ⇐ percentile(pairwiseDist, percentileTh)
6: instancesToQuery ⇐ select(setO, pairwiseDist < th)
7: for each i ∈ instancesToQuery do
8: closestCF ⇐ findCF (M, I, i, k, steps, classo, classc)
9: for each f ∈ F do
10: CFtmp ⇐ changeFeatureV alue(closestCF, i, f)
11: if M.predict(CFtmp) == classo then
12: relevantFeatures.append(f)
13: end if
14: end for
15: end for
16: featureImportance ⇐ frequenceByFeature(relevantFeatures)
17: return featureImportance
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As shown in [9], BoCSoR results in a time complexity characterized by a
linear growth with respect to the number of features (F) and a quadratic growth
with respect to the number of samples (N), i.e. O(N2 + N · F · log(N)). This
is a smaller time complexity if compared to SHAP’s one, which is characterized
by linear growth with respect to the number of samples and exponential growth
with respect to the number of features. If compared to other approaches able
to combine feature importance and counterfactual explanations, BoCSoR (i)
provides global feature importance (in contrast with [38], [25], and [33]), (ii) is
characterized by a computational cost that scales linearly with the number of
features (conversely to [25] and [27]), and (iii) does not require predetermined
structured knowledge (as required by [17]).

4 Experimental datasets

In this section, the experimental datasets are described. A comparison with other
feature importance approaches is obtained using five benchmark datasets col-
lected from the well-known and publicly available UCI repository. Those datasets
differ in terms of the number of features, classes, and instances. Specifically, the
pen-based, satimage, segment, letter, and zoo datasets are employed [14]. The
main characteristics of these data sets are summarized in Table 1.

Table 1. Characteristics of the benchmark datasets employed for this study.

Dataset Penbased Satimage Segment Letter Zoo

#instances 10992 6435 2310 20000 101
#features 16 36 19 16 16
#classes 10 6 7 26 7

Moreover, a real-world dataset is employed in this study. Such data is pro-
vided by Koerber Tissue, a company that produces industrial machines to man-
ufacture tissue paper. Each machine consists of two principal components: the
embosser and the rewinder. The reels of raw paper layers are unwound and
stacked by the rewinder and then passed to the embosser. Both rubber and steel
rolls are used by the embosser to press and glue the tissue layers while imprinting
a design on the paper. Each machine is tested with a variety of paper types and
production settings, such as the rewinder speed or embossing pressure. For each
production setting, some measurements are taken on the finished product. The
final product’s quality-related characteristics, like paper bulk and resistance, are
included in these measurements. These characteristics can be described via levels
(i.e., high, medium, low).

Like many real-world datasets, the company’s data are characterized by a
significant amount of missing values. The data is preprocessed to address this
issue. First, all of the columns and rows with more than 50% missing values are
removed. Then, the data instances are clustered considering the categorical fea-
tures that do not present missing values. For each feature, the numerical missing
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value of one data instance is replaced with the median (mode if categorical) of
its cluster.

The resulting datasets consist of more than 650 instances. The dataset to
recognize the paper resistance levels consists of 17 features, whereas the dataset
for recognizing bulk levels consists of 15 features. Specifically, the data consists
of the following features: (i) a unique identifier for each test measurement (ID),
which is not considered an informative feature and thus it is removed from the
analysis; (ii) the strength of the raw paper in the latitudinal (STRLA) and lon-
gitudinal direction (STRLO); (iii) the percentage of elongation of the raw paper
in the latitudinal (ELOLA) and longitudinal direction (ELOLO); the weight of
the raw paper (WEIGHT); (iv) the thickness of the raw paper (THICK); (v) the
hardness of the rubber top (TRH) and bottom (BRH) roll used to imprint a mo-
tif on the paper, and measured in Shore A; (vi) a unique identifier for the process
aimed at coupling different tissue layers (COUPL), which can be ”molded” (M),
”unmolded” (UM), or ”glued embossing” (GE); (vii) a unique identifier for the
embosser model; (viii) a unique identifier for the rewinder (REW) and embosser
(EMB) model; (ix) a unique identifier of the motif characterizing the embosser
top (ETR) and bottom (EBR) roll; (x) the type of product being manufactured
(TYPRO); (xi) the number of tissue layers in the final product (LAYERS); (xii)
the ratio of the raw paper resistance in the longitudinal and latitudinal direc-
tions, if dry (DRYRAT); and (xiii) a boolean indicating whether the raw paper
is regular or structured (STRCT).

In order to obtain the ground truth of feature importance we gathered both
the experts of the tissue production process and industrial machine data ana-
lysts and proposed to them a schema of expected importance consisting of 3
levels (LOW, MEDIUM, HIGH). Their task was to agree on how critical and
informative each feature could be for recognizing the Bulk or Res levels of the
final product according to their experience and domain knowledge. Bulk and
Resistance are the targets of the analysis (can be low, medium, or high) and for
this reason are not displayed in Table 2.

Each numerical feature is rescaled between 0 and 1 via a min-max procedure
(Formulae 1). Moreover, each categorical feature is processed via a one-hot en-
coding procedure, i.e. replacing categorical labels with binary encodings of their
enumerates. This also allows to employ the Euclidean distance measure for the
counterfactuals’ search.

MinMax(x,X) =
x−min(X)

max(X)−min(X)
(1)

5 Results and discussion

The experimental results have been provided by considering five different bench-
mark datasets from the UC Irvine Machine Learning Repository (i.e. pen-based,
satimage, segment, letter, and zoo) and a real-world industrial dataset. All the
experiments are performed using a Monte Carlo 10 folds validation framework.
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Table 2. Expected feature importance level according to the domain expert.

Attribute Units Imp. for Bulk Imp. for Res

ID Integer - -
STRLA N/m LOW MEDIUM
STRLO N/m LOW MEDIUM
ELOLA % LOW LOW
ELOLO % LOW LOW
WEIGHT gr/m2 MEDIUM MEDIUM
THICK mm - LOW
TRH ShA LOW LOW
BRH ShA - LOW
COUPL Category MEDIUM LOW
EMB Category MEDIUM LOW
REW Category MEDIUM LOW
ETR Category MEDIUM MEDIUM
EBR Category MEDIUM MEDIUM
TYPRO Category HIGH HIGH
LAYERS Integer HIGH HIGH
DRYRAT Real LOW MEDIUM
STRCT Boolean HIGH HIGH

The performances obtained are presented via their mean. As the main perfor-
mance measure for the classification performance, the accuracy (Formulae 2) is
used. In Formulae 2, Ci is one if the classification of instance i is correct, zero
otherwise.

Accuracy =
1

N

N∑
i=1

Ci (2)

As the main computational complexity measure, we use the computational
time (in seconds).

Firstly, different state-of-the-art feature importance measures have been em-
ployed and compared against our approach, considering the similarity between
the features ranking provided. Then we validated and compared SHAP and BoC-
SoR with the ground truth explanation provided by the real-world industrial
dataset. Both BoCSoR and SHAP are implemented in Python. To summarize,
we are validating our XAI algorithm in its ability to open-the-black-box on sev-
eral benchmark datasets against other state-of-the-art approaches; moreover, by
comparing those explanations with the ground truth of the expected feature im-
portance we are also investigating how much the explanations provided by our
approach resemble the domain-knowledge.

5.1 UCI datasets

We trained and tested an MLP classifier in a 10-cross-fold validation setup over
the different benchmark datasets. The MLP has been implemented via the well-
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known scikit-learn python library and consists of 3 dense fully connected layers
with 128, 64, and 32 neurons respectively, ReLU as the activation function, and
a last classification layer with softmax activation function with a number of
neurons equal to the number of classes to be recognized (Tab. 3).

Table 3. Average classification accuracy of the MLP classifier over different benchmark
datasets.

penbased satimage segment letter zoo

Train Acc. (%) 0.99 0.99 0.98 0.98 1.0
Test Acc. (%) 0.99 0.99 0.97 0.94 0.90

The trained MLP model is also used to compute the feature importance via
our approach and other state-of-the-art methods. This enables the measurement
of the similarity between the resulting feature’s importance rankings by consider-
ing a couple of classes. To compute the similarity between the rankings obtained
via BoCSoR and the ones obtained via other feature importance approaches we
employ the coefficient of ranking similarity (WS). WS is a ranking similarity
that weights the disagreement between two rankings according to their position
in the ranks.

WS = 1−
N∑
i=1

(2−Rxi
|Rxi

−Ryi
|

max(|1−Rxi |, |N −Rxi |)
) (3)

In the formula WS is one value of the similarity coefficient, N is the length
of the rank, and Rxi

is the index of the feature in position i in the ranking R
for the feature ranking provided by the approach x.

Table 4 shows the WS obtained by measuring the ranking similarity between
BoCSoR and four other features importance measures, i.e. mutual information
[26], relief [37], permutation importance [11], and SHAP[27]. Given the high
similarity of the ranks obtained from BoCSoR and other measures of feature
importance, we can infer that such ranking has some degree of reliability in cap-
turing importance as measured by other feature importance approaches already
known.

Table 4. Feature importance ranking similarity between Bocsor and other state-of-
the-art approaches over the benchmark datasets.

penbased satimage segment letter zoo

Mutual info. 0.75 0.88 0.88 0.93 0.87
Relief 0.82 0.94 0.73 0.99 0.97
Permut. imp. 0.59 0.90 0.95 0.82 0.95
SHAP 0.82 0.91 0.96 0.92 0.90
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Since one of the most discussed problems in the literature on features’ im-
portance approaches is their computational complexity, we consider the compu-
tational time required by the approaches employed in the study to measure the
importance of the features. To provide a fair comparison, we used the same num-
ber of instances considered by BoCSoR, i.e., the number of instances close to the
decision boundary. To this end, we employed the KernelExplainer provided by
SHAP with a random subsampling strategy. All the experiments have been run
on a machine with the following computational resources: GeForce GTX 1660
super as GPU, 16 GB 3200 MHz RAM, and AMD Ryzen 3600 as CPU. Table 5
summarizes the obtained results.

Table 5. Computational time in seconds

penbased satimage segment letter zoo

Mutual info. 0.60 1.04 0.18 0.46 0.11
Relief 5.27 6.76 7.04 6.48 4.99
Permut. imp. 0.69 1.26 0.23 0.56 0.06
SHAP 73.42 75.51 7.40 49.88 0.06
BoCSoR 0.51 0.87 0.16 0.40 0.03

As the tables 4 and 5 shows, BoCSoR provides a feature importance ranking
similar to the ones provided by SHAP and Relief, which are popular state-of-
the-art approaches, with all the benchmark datasets. At the same time, BoCSoR
results in way less computational time than the others, in particular, if compared
to SHAP.

5.2 Real-world Industrial dataset

By using the ground-truth knowledge provided by the real-world industrial ex-
pert we validate the measured feature importance obtained via BoCSoR and
SHAP. The MLP classifier has been trained and tested in a 10-fold cross-validation
on both the tasks provided by the dataset, i.e. BULK and RES classification.
The performances of the model are detailed in Tab 6.

Table 6. Average classification performances of the selected ML model in the two
tasks, BULK and RES classification, on the provided real-world industrial datasets.

BULK RES

class precision recall f1-score precision recall f1-score

1 0.95 0.79 0.86 0.71 0.62 0.67
2 0.64 0.90 0.75 0.55 0.75 0.63
3 0.94 0.77 0.85 1.00 0.71 0.83

macro avg. 0.85 0.82 0.82 0.75 0.70 0.71
micro avg. 0.86 0.82 0.82 0.74 0.70 0.71
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To measure the feature importance for the MLP classifiers, two different
configurations of BoCSoR have been tested. Specifically, we employed 10 as
the configuration for steps parameter, a threshold percentile, percentileTh ∈
{10, 20}, and a number of nearest neighbors, k ∈ {10, 20}. To reduce the task
to a binary classification for the computation of the features’ importance, the
MLP classifier is trained in a 1vsAll fashion. To measure the agreement between
the ranking of the features obtained via BoCSoR and SHAP and the ground
truth, we group the obtained ranks by levels so that an accuracy measure can
be computed. Since only 3 levels of feature importance are known, the accuracy
was computed by considering the number of correctly assigned levels of feature
importance. For example, if out of 10 features 4 have importance HIGH, the first
4 most important features obtained by a measure (e.g. BoCSoR or SHAP) are
assigned that level. This is repeated for each importance level. Once the ranks
obtained from SHAP and BoCSoR are reduced to a 3-level rank, it is possible to
calculate how many of them were correctly assigned (i.e., as indicated by ground
truth) and measure this via an accuracy metric.

Fig. 2. Accuracy (mean and variance) of the rankings for the real world industrial
dataset considering two different configurations of threshold percentile, T , and number
of nearest neighbors selected, K.
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As Fig. 2 shows, both SHAP and BoCSoR result in good performances when
matching the ground truth provided by the domain expert for the classification
of BULK levels. Specifically, BoCSoR has better performances than SHAP in
both the configurations for the classes 2 and 3, while SHAP has better perfor-
mances for the class 1. For the classification of RES levels instead, the accuracy
of both approaches is slightly lower. Nevertheless, these performances are par-
tially justified by the fact that the MLP results in lower RES levels’ recognition
performances if compared with the BULK levels’ one. Considering the accuracy
of the ranking of the features provided by SHAP and BoCSoR, Fig. 2 shows how
BoCSoR has always better performances, i.e. if compared to SHAP, BoCSoR
results in an improved agreement against the ground-truth explanations. This
result is consistent despite the employed configurations of threshold percentile,
T , and the number of nearest neighbors, K.

6 Conclusion

In this study, we proposed a knowledge-driven validation of a counterfactual-
based features importance method, i.e. BoCSoR, and compared it against dif-
ferent state-of-the-art feature importance approaches. In our experiments, we
considered five publicly available benchmark datasets and two real-world indus-
trial datasets which also provide a ground truth explanation in the form of levels
of features importance. The results obtained with the benchmark datasets show
that BoCSoR provides features rankings comparable with the other state-of-
the-art approaches with much less computation time, especially if we consider
datasets with more number instances (e.g. penbased) and popular and success-
ful state-of-the-art methods (e.g. SHAP). We also tested the ability of BoCSoR
and SHAP to provide feature importance explanations aligned with the experts’
domain knowledge. According to our results, BoCSoR provides more accurate
feature importance in most of the configurations tested.

BoCSoR exploits a linear search starting from instances close to the deci-
sion boundary to keep the computational complexity low. However, this method
cannot ensure the smallest distance between the instance and the obtained coun-
terfactual, nor can it guarantee the best approximation of the decision boundary.
The always-growing literature on counterfactual explanations can offer sophisti-
cated approaches able to provide a better trade-off between decision boundary
approximation and computational cost.

Also, BoCSoR treats categorical features via a one-hot encoding approach,
but this may not be the optimal choice when dealing with a perturbation-based
methodology to generate counterfactuals. Indeed, the midpoints between two
categorical feature encodings might correspond to instances that are not mean-
ingful for the problem under analysis.

Future research will explore these directions.
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